Joint Representation Learning and Keypoint Detection for Cross-View Geo-Localization

In this paper, we study the cross-view geo-localization problem to match images from different viewpoints. The key motivation underpinning this task is to learn a discriminative viewpoint-invariant visual representation. Inspired by the human visual system for mining local patterns, we propose a new...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 05., Seite 3780-3792
1. Verfasser: Lin, Jinliang (VerfasserIn)
Weitere Verfasser: Zheng, Zhedong, Zhong, Zhun, Luo, Zhiming, Li, Shaozi, Yang, Yi, Sebe, Nicu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM341274984
003 DE-627
005 20231226011413.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3175601  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM341274984 
035 |a (NLM)35604972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin, Jinliang  |e verfasserin  |4 aut 
245 1 0 |a Joint Representation Learning and Keypoint Detection for Cross-View Geo-Localization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.06.2022 
500 |a Date Revised 06.06.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we study the cross-view geo-localization problem to match images from different viewpoints. The key motivation underpinning this task is to learn a discriminative viewpoint-invariant visual representation. Inspired by the human visual system for mining local patterns, we propose a new framework called RK-Net to jointly learn the discriminative Representation and detect salient Keypoints with a single Network. Specifically, we introduce a Unit Subtraction Attention Module (USAM) that can automatically discover representative keypoints from feature maps and draw attention to the salient regions. USAM contains very few learning parameters but yields significant performance improvement and can be easily plugged into different networks. We demonstrate through extensive experiments that (1) by incorporating USAM, RK-Net facilitates end-to-end joint learning without the prerequisite of extra annotations. Representation learning and keypoint detection are two highly-related tasks. Representation learning aids keypoint detection. Keypoint detection, in turn, enriches the model capability against large appearance changes caused by viewpoint variants. (2) USAM is easy to implement and can be integrated with existing methods, further improving the state-of-the-art performance. We achieve competitive geo-localization accuracy on three challenging datasets, i. e., University-1652, CVUSA and CVACT. Our code is available at https://github.com/AggMan96/RK-Net 
650 4 |a Journal Article 
700 1 |a Zheng, Zhedong  |e verfasserin  |4 aut 
700 1 |a Zhong, Zhun  |e verfasserin  |4 aut 
700 1 |a Luo, Zhiming  |e verfasserin  |4 aut 
700 1 |a Li, Shaozi  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Sebe, Nicu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 05., Seite 3780-3792  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:05  |g pages:3780-3792 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3175601  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 05  |h 3780-3792