Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization

Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential f...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 69(2022), 7 vom: 05. Juli, Seite 2339-2351
1. Verfasser: Pyle, Richard J (VerfasserIn)
Weitere Verfasser: Hughes, Robert R, Ali, Amine Ait Si, Wilcox, Paul D
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM341274933
003 DE-627
005 20231226011413.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TUFFC.2022.3176926  |2 doi 
028 5 2 |a pubmed24n1137.xml 
035 |a (DE-627)NLM341274933 
035 |a (NLM)35604965 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pyle, Richard J  |e verfasserin  |4 aut 
245 1 0 |a Uncertainty Quantification for Deep Learning in Ultrasonic Crack Characterization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 04.07.2022 
500 |a Date Revised 06.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Deep learning for nondestructive evaluation (NDE) has received a lot of attention in recent years for its potential ability to provide human level data analysis. However, little research into quantifying the uncertainty of its predictions has been done. Uncertainty quantification (UQ) is essential for qualifying NDE inspections and building trust in their predictions. Therefore, this article aims to demonstrate how UQ can best be achieved for deep learning in the context of crack sizing for inline pipe inspection. A convolutional neural network architecture is used to size surface breaking defects from plane wave imaging (PWI) images with two modern UQ methods: deep ensembles and Monte Carlo dropout. The network is trained using PWI images of surface breaking defects simulated with a hybrid finite element / ray-based model. Successful UQ is judged by calibration and anomaly detection, which refer to whether in-domain model error is proportional to uncertainty and if out of training domain data is assigned high uncertainty. Calibration is tested using simulated and experimental images of surface breaking cracks, while anomaly detection is tested using experimental side-drilled holes and simulated embedded cracks. Monte Carlo dropout demonstrates poor uncertainty quantification with little separation between in and out-of-distribution data and a weak linear fit ( R=0.84 ) between experimental root-mean-square-error and uncertainty. Deep ensembles improve upon Monte Carlo dropout in both calibration ( R=0.95 ) and anomaly detection. Adding spectral normalization and residual connections to deep ensembles slightly improves calibration ( R=0.98 ) and significantly improves the reliability of assigning high uncertainty to out-of-distribution samples 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Hughes, Robert R  |e verfasserin  |4 aut 
700 1 |a Ali, Amine Ait Si  |e verfasserin  |4 aut 
700 1 |a Wilcox, Paul D  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1986  |g 69(2022), 7 vom: 05. Juli, Seite 2339-2351  |w (DE-627)NLM098181017  |x 1525-8955  |7 nnns 
773 1 8 |g volume:69  |g year:2022  |g number:7  |g day:05  |g month:07  |g pages:2339-2351 
856 4 0 |u http://dx.doi.org/10.1109/TUFFC.2022.3176926  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 69  |j 2022  |e 7  |b 05  |c 07  |h 2339-2351