Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 30 vom: 02. Juli, Seite e2201809
1. Verfasser: Tamasi, Matthew J (VerfasserIn)
Weitere Verfasser: Patel, Roshan A, Borca, Carlos H, Kosuri, Shashank, Mugnier, Heloise, Upadhya, Rahul, Murthy, N Sanjeeva, Webb, Michael A, Gormley, Adam J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Bayesian optimization active learning combinatorial polymer design machine learning polymer-protein conjugates protein formulations single-enzyme nanoparticles Polymers Proteins
LEADER 01000caa a22002652 4500
001 NLM341161691
003 DE-627
005 20240303231821.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202201809  |2 doi 
028 5 2 |a pubmed24n1315.xml 
035 |a (DE-627)NLM341161691 
035 |a (NLM)35593444 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tamasi, Matthew J  |e verfasserin  |4 aut 
245 1 0 |a Machine Learning on a Robotic Platform for the Design of Polymer-Protein Hybrids 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.07.2022 
500 |a Date Revised 03.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Polymer-protein hybrids are intriguing materials that can bolster protein stability in non-native environments, thereby enhancing their utility in diverse medicinal, commercial, and industrial applications. One stabilization strategy involves designing synthetic random copolymers with compositions attuned to the protein surface, but rational design is complicated by the vast chemical and composition space. Here, a strategy is reported to design protein-stabilizing copolymers based on active machine learning, facilitated by automated material synthesis and characterization platforms. The versatility and robustness of the approach is demonstrated by the successful identification of copolymers that preserve, or even enhance, the activity of three chemically distinct enzymes following exposure to thermal denaturing conditions. Although systematic screening results in mixed success, active learning appropriately identifies unique and effective copolymer chemistries for the stabilization of each enzyme. Overall, this work broadens the capabilities to design fit-for-purpose synthetic copolymers that promote or otherwise manipulate protein activity, with extensions toward the design of robust polymer-protein hybrid materials 
650 4 |a Journal Article 
650 4 |a Bayesian optimization 
650 4 |a active learning 
650 4 |a combinatorial polymer design 
650 4 |a machine learning 
650 4 |a polymer-protein conjugates 
650 4 |a protein formulations 
650 4 |a single-enzyme nanoparticles 
650 7 |a Polymers  |2 NLM 
650 7 |a Proteins  |2 NLM 
700 1 |a Patel, Roshan A  |e verfasserin  |4 aut 
700 1 |a Borca, Carlos H  |e verfasserin  |4 aut 
700 1 |a Kosuri, Shashank  |e verfasserin  |4 aut 
700 1 |a Mugnier, Heloise  |e verfasserin  |4 aut 
700 1 |a Upadhya, Rahul  |e verfasserin  |4 aut 
700 1 |a Murthy, N Sanjeeva  |e verfasserin  |4 aut 
700 1 |a Webb, Michael A  |e verfasserin  |4 aut 
700 1 |a Gormley, Adam J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 30 vom: 02. Juli, Seite e2201809  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:30  |g day:02  |g month:07  |g pages:e2201809 
856 4 0 |u http://dx.doi.org/10.1002/adma.202201809  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 30  |b 02  |c 07  |h e2201809