Input layer regularization for magnetic resonance relaxometry biexponential parameter estimation

© 2022 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 60(2022), 11 vom: 17. Nov., Seite 1076-1086
1. Verfasser: Rozowski, Michael (VerfasserIn)
Weitere Verfasser: Palumbo, Jonathan, Bisen, Jay, Bi, Chuan, Bouhrara, Mustapha, Czaja, Wojciech, Spencer, Richard G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Intramural MRI biexponentials deep learning neural network parameter estimation regularization relaxometry
LEADER 01000caa a22002652 4500
001 NLM34116111X
003 DE-627
005 20240918231839.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/mrc.5289  |2 doi 
028 5 2 |a pubmed24n1538.xml 
035 |a (DE-627)NLM34116111X 
035 |a (NLM)35593385 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rozowski, Michael  |e verfasserin  |4 aut 
245 1 0 |a Input layer regularization for magnetic resonance relaxometry biexponential parameter estimation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.10.2022 
500 |a Date Revised 18.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 John Wiley & Sons Ltd. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA. 
520 |a Many methods have been developed for estimating the parameters of biexponential decay signals, which arise throughout magnetic resonance relaxometry (MRR) and the physical sciences. This is an intrinsically ill-posed problem so that estimates can depend strongly on noise and underlying parameter values. Regularization has proven to be a remarkably efficient procedure for providing more reliable solutions to ill-posed problems, while, more recently, neural networks have been used for parameter estimation. We re-address the problem of parameter estimation in biexponential models by introducing a novel form of neural network regularization which we call input layer regularization (ILR). Here, inputs to the neural network are composed of a biexponential decay signal augmented by signals constructed from parameters obtained from a regularized nonlinear least-squares estimate of the two decay time constants. We find that ILR results in a reduction in the error of time constant estimates on the order of 15%-50% or more, depending on the metric used and signal-to-noise level, with greater improvement seen for the time constant of the more rapidly decaying component. ILR is compatible with existing regularization techniques and should be applicable to a wide range of parameter estimation problems 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, N.I.H., Intramural 
650 4 |a MRI 
650 4 |a biexponentials 
650 4 |a deep learning 
650 4 |a neural network 
650 4 |a parameter estimation 
650 4 |a regularization 
650 4 |a relaxometry 
700 1 |a Palumbo, Jonathan  |e verfasserin  |4 aut 
700 1 |a Bisen, Jay  |e verfasserin  |4 aut 
700 1 |a Bi, Chuan  |e verfasserin  |4 aut 
700 1 |a Bouhrara, Mustapha  |e verfasserin  |4 aut 
700 1 |a Czaja, Wojciech  |e verfasserin  |4 aut 
700 1 |a Spencer, Richard G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Magnetic resonance in chemistry : MRC  |d 1985  |g 60(2022), 11 vom: 17. Nov., Seite 1076-1086  |w (DE-627)NLM098179667  |x 1097-458X  |7 nnns 
773 1 8 |g volume:60  |g year:2022  |g number:11  |g day:17  |g month:11  |g pages:1076-1086 
856 4 0 |u http://dx.doi.org/10.1002/mrc.5289  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 60  |j 2022  |e 11  |b 17  |c 11  |h 1076-1086