|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM34111149X |
003 |
DE-627 |
005 |
20231226011023.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2022.3159125
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1136.xml
|
035 |
|
|
|a (DE-627)NLM34111149X
|
035 |
|
|
|a (NLM)35588408
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Karakasis, Paris A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multisubject Task-Related fMRI Data Processing via a Two-Stage Generalized Canonical Correlation Analysis
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.06.2022
|
500 |
|
|
|a Date Revised 16.06.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Functional magnetic resonance imaging (fMRI) is one of the most popular methods for studying the human brain. Task-related fMRI data processing aims to determine which brain areas are activated when a specific task is performed and is usually based on the Blood Oxygen Level Dependent (BOLD) signal. The background BOLD signal also reflects systematic fluctuations in regional brain activity which are attributed to the existence of resting-state brain networks. We propose a new fMRI data generating model which takes into consideration the existence of common task-related and resting-state components. We first estimate the common task-related temporal component, via two successive stages of generalized canonical correlation analysis and, then, we estimate the common task-related spatial component, leading to a task-related activation map. The experimental tests of our method with synthetic data reveal that we are able to obtain very accurate temporal and spatial estimates even at very low Signal to Noise Ratio (SNR), which is usually the case in fMRI data processing. The tests with real-world fMRI data show significant advantages over standard procedures based on General Linear Models (GLMs)
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liavas, Athanasios P
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sidiropoulos, Nicholas D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Simos, Panagiotis G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Papadaki, Efrosini
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 31(2022) vom: 20., Seite 4011-4022
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2022
|g day:20
|g pages:4011-4022
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2022.3159125
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2022
|b 20
|h 4011-4022
|