Structural insights into the assembly and the function of the plant oxidative phosphorylation system

© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 235(2022), 4 vom: 01. Aug., Seite 1315-1329
1. Verfasser: Meyer, Etienne H (VerfasserIn)
Weitere Verfasser: Letts, James A, Maldonado, Maria
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Review Research Support, U.S. Gov't, Non-P.H.S. Research Support, Non-U.S. Gov't high-resolution structures oxidative phosphorylation system plant mitochondria protein complexes respiration structure-function mehr... supercomplexes Adenosine Triphosphate 8L70Q75FXE
Beschreibung
Zusammenfassung:© 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.
One of the key functions of mitochondria is the production of ATP to support cellular metabolism and growth. The last step of mitochondrial ATP synthesis is performed by the oxidative phosphorylation (OXPHOS) system, an ensemble of protein complexes embedded in the inner mitochondrial membrane. In the last 25 yr, many structures of OXPHOS complexes and supercomplexes have been resolved in yeast, mammals, and bacteria. However, structures of plant OXPHOS enzymes only became available very recently. In this review, we highlight the plant-specific features revealed by the recent structures and discuss how they advance our understanding of the function and assembly of plant OXPHOS complexes. We also propose new hypotheses to be tested and discuss older findings to be re-evaluated. Further biochemical and structural work on the plant OXPHOS system will lead to a deeper understanding of plant respiration and its regulation, with significant agricultural, environmental, and societal implications
Beschreibung:Date Completed 15.07.2022
Date Revised 21.07.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.18259