Triggering Lattice Oxygen Activation of Single-Atomic Mo Sites Anchored on Ni-Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 29 vom: 01. Juli, Seite e2202523
1. Verfasser: Wu, Yunzhen (VerfasserIn)
Weitere Verfasser: Zhao, Yuanyuan, Zhai, Panlong, Wang, Chen, Gao, Junfeng, Sun, Licheng, Hou, Jungang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article covalency high-valency metals lattice oxygen activation oxygen evolution reaction single-atom Mo sites
LEADER 01000caa a22002652c 4500
001 NLM341003670
003 DE-627
005 20250303090008.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202523  |2 doi 
028 5 2 |a pubmed25n1136.xml 
035 |a (DE-627)NLM341003670 
035 |a (NLM)35577533 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yunzhen  |e verfasserin  |4 aut 
245 1 0 |a Triggering Lattice Oxygen Activation of Single-Atomic Mo Sites Anchored on Ni-Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Tuning the reactivity of lattice oxygen is of significance for lowering the energy barriers and accelerating the oxygen evolution reaction (OER). Herein, single-atomic Mo sites are anchored on Ni-Fe oxyhydroxide nanoarrays by a facile metal-organic-framework-derived strategy, exhibiting superior performance toward the OER in alkaline media. In situ electrochemical spectroscopy and isotope-labeling experiments reveal the involvement of lattice oxygen during OER cycles. Combining theoretical and experimental investigations of the electronic configuration, it is comprehensively confirmed that the incorporation of single-atomic Mo sites enables higher oxidation state of the metal and strengthened metal-oxygen hybridization, as well as the formation of oxidized ligand holes above the Fermi level. In a word, the considerable acceleration of water oxidation is achieved via enhancing the reactivity of lattice oxygen and triggering the lattice oxygen activation. This work may provide new insights for designing ideal electrocatalysts via tuning the chemical state and activating the anions ligands 
650 4 |a Journal Article 
650 4 |a covalency 
650 4 |a high-valency metals 
650 4 |a lattice oxygen activation 
650 4 |a oxygen evolution reaction 
650 4 |a single-atom Mo sites 
700 1 |a Zhao, Yuanyuan  |e verfasserin  |4 aut 
700 1 |a Zhai, Panlong  |e verfasserin  |4 aut 
700 1 |a Wang, Chen  |e verfasserin  |4 aut 
700 1 |a Gao, Junfeng  |e verfasserin  |4 aut 
700 1 |a Sun, Licheng  |e verfasserin  |4 aut 
700 1 |a Hou, Jungang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 29 vom: 01. Juli, Seite e2202523  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:29  |g day:01  |g month:07  |g pages:e2202523 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202523  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 29  |b 01  |c 07  |h e2202523