|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM341003670 |
003 |
DE-627 |
005 |
20250303090008.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202202523
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1136.xml
|
035 |
|
|
|a (DE-627)NLM341003670
|
035 |
|
|
|a (NLM)35577533
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wu, Yunzhen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Triggering Lattice Oxygen Activation of Single-Atomic Mo Sites Anchored on Ni-Fe Oxyhydroxides Nanoarrays for Electrochemical Water Oxidation
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 21.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Tuning the reactivity of lattice oxygen is of significance for lowering the energy barriers and accelerating the oxygen evolution reaction (OER). Herein, single-atomic Mo sites are anchored on Ni-Fe oxyhydroxide nanoarrays by a facile metal-organic-framework-derived strategy, exhibiting superior performance toward the OER in alkaline media. In situ electrochemical spectroscopy and isotope-labeling experiments reveal the involvement of lattice oxygen during OER cycles. Combining theoretical and experimental investigations of the electronic configuration, it is comprehensively confirmed that the incorporation of single-atomic Mo sites enables higher oxidation state of the metal and strengthened metal-oxygen hybridization, as well as the formation of oxidized ligand holes above the Fermi level. In a word, the considerable acceleration of water oxidation is achieved via enhancing the reactivity of lattice oxygen and triggering the lattice oxygen activation. This work may provide new insights for designing ideal electrocatalysts via tuning the chemical state and activating the anions ligands
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a covalency
|
650 |
|
4 |
|a high-valency metals
|
650 |
|
4 |
|a lattice oxygen activation
|
650 |
|
4 |
|a oxygen evolution reaction
|
650 |
|
4 |
|a single-atom Mo sites
|
700 |
1 |
|
|a Zhao, Yuanyuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhai, Panlong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wang, Chen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Junfeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Licheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hou, Jungang
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 29 vom: 01. Juli, Seite e2202523
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:29
|g day:01
|g month:07
|g pages:e2202523
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202202523
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 29
|b 01
|c 07
|h e2202523
|