Video Quality Model of Compression, Resolution and Frame Rate Adaptation Based on Space-Time Regularities

Being able to accurately predict the visual quality of videos subjected to various combinations of dimension reduction protocols is of high interest to the streaming video industry, given rapid increases in frame resolutions and frame rates. In this direction, we have developed a video quality predi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 22., Seite 3644-3656
1. Verfasser: Lee, Dae Yeol (VerfasserIn)
Weitere Verfasser: Kim, Jongho, Ko, Hyunsuk, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM340992557
003 DE-627
005 20231226010735.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3173810  |2 doi 
028 5 2 |a pubmed24n1136.xml 
035 |a (DE-627)NLM340992557 
035 |a (NLM)35576411 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lee, Dae Yeol  |e verfasserin  |4 aut 
245 1 0 |a Video Quality Model of Compression, Resolution and Frame Rate Adaptation Based on Space-Time Regularities 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Being able to accurately predict the visual quality of videos subjected to various combinations of dimension reduction protocols is of high interest to the streaming video industry, given rapid increases in frame resolutions and frame rates. In this direction, we have developed a video quality predictor that is sensitive to spatial, temporal, or space-time subsampling combined with compression. Our predictor is based on new models of space-time natural video statistics (NVS). Specifically, we model the statistics of divisively normalized difference between neighboring frames that are relatively displaced. In an extensive empirical study, we found that those paths of space-time displaced frame differences that provide maximal regularity against our NVS model generally align best with motion trajectories. Motivated by this, we built a new video quality prediction engine that extracts NVS features that represent how space-time directional regularities are disturbed by space-time distortions. Based on parametric models of these regularities, we compute features that are used to train a regressor that can accurately predict perceptual quality. As a stringent test of the new model, we apply it to the difficult problem of predicting the quality of videos subjected not only to compression, but also to downsampling in space and/or time. We show that the new quality model achieves state-of-the-art (SOTA) prediction performance on the new ETRI-LIVE Space-Time Subsampled Video Quality (STSVQ) and also on the AVT-VQDB-UHD-1 database 
650 4 |a Journal Article 
700 1 |a Kim, Jongho  |e verfasserin  |4 aut 
700 1 |a Ko, Hyunsuk  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 22., Seite 3644-3656  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:22  |g pages:3644-3656 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3173810  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 22  |h 3644-3656