Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 28 vom: 30. Juli, Seite e2200956
1. Verfasser: Lyu, Bosai (VerfasserIn)
Weitere Verfasser: Chen, Jiajun, Lou, Shuo, Li, Can, Qiu, Lu, Ouyang, Wengen, Xie, Jingxu, Mitchell, Izaac, Wu, Tongyao, Deng, Aolin, Hu, Cheng, Zhou, Xianliang, Shen, Peiyue, Ma, Saiqun, Wu, Zhenghan, Watanabe, Kenji, Taniguchi, Takashi, Wang, Xiaoqun, Liang, Qi, Jia, Jinfeng, Urbakh, Michael, Hod, Oded, Ding, Feng, Wang, Shiyong, Shi, Zhiwen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article carbon nanotubes catalytic growth graphene nanoribbons hexagonal boron nitride moiré superlattices superlubricity
LEADER 01000naa a22002652 4500
001 NLM340838353
003 DE-627
005 20231226010402.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202200956  |2 doi 
028 5 2 |a pubmed24n1136.xml 
035 |a (DE-627)NLM340838353 
035 |a (NLM)35560711 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lyu, Bosai  |e verfasserin  |4 aut 
245 1 0 |a Catalytic Growth of Ultralong Graphene Nanoribbons on Insulating Substrates 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Graphene nanoribbons (GNRs) with widths of a few nanometers are promising candidates for future nanoelectronic applications due to their structurally tunable bandgaps, ultrahigh carrier mobilities, and exceptional stability. However, the direct growth of micrometer-long GNRs on insulating substrates, which is essential for the fabrication of nanoelectronic devices, remains an immense challenge. Here, the epitaxial growth of GNRs on an insulating hexagonal boron nitride (h-BN) substrate through nanoparticle-catalyzed chemical vapor deposition is reported. Ultranarrow GNRs with lengths of up to 10 µm are synthesized. Remarkably, the as-grown GNRs are crystallographically aligned with the h-BN substrate, forming 1D moiré superlattices. Scanning tunneling microscopy reveals an average width of 2 nm and a typical bandgap of ≈1 eV for similar GNRs grown on conducting graphite substrates. Fully atomistic computational simulations support the experimental results and reveal a competition between the formation of GNRs and carbon nanotubes during the nucleation stage, and van der Waals sliding of the GNRs on the h-BN substrate throughout the growth stage. This study provides a scalable, single-step method for growing micrometer-long narrow GNRs on insulating substrates, thus opening a route to explore the performance of high-quality GNR devices and the fundamental physics of 1D moiré superlattices 
650 4 |a Journal Article 
650 4 |a carbon nanotubes 
650 4 |a catalytic growth 
650 4 |a graphene nanoribbons 
650 4 |a hexagonal boron nitride 
650 4 |a moiré superlattices 
650 4 |a superlubricity 
700 1 |a Chen, Jiajun  |e verfasserin  |4 aut 
700 1 |a Lou, Shuo  |e verfasserin  |4 aut 
700 1 |a Li, Can  |e verfasserin  |4 aut 
700 1 |a Qiu, Lu  |e verfasserin  |4 aut 
700 1 |a Ouyang, Wengen  |e verfasserin  |4 aut 
700 1 |a Xie, Jingxu  |e verfasserin  |4 aut 
700 1 |a Mitchell, Izaac  |e verfasserin  |4 aut 
700 1 |a Wu, Tongyao  |e verfasserin  |4 aut 
700 1 |a Deng, Aolin  |e verfasserin  |4 aut 
700 1 |a Hu, Cheng  |e verfasserin  |4 aut 
700 1 |a Zhou, Xianliang  |e verfasserin  |4 aut 
700 1 |a Shen, Peiyue  |e verfasserin  |4 aut 
700 1 |a Ma, Saiqun  |e verfasserin  |4 aut 
700 1 |a Wu, Zhenghan  |e verfasserin  |4 aut 
700 1 |a Watanabe, Kenji  |e verfasserin  |4 aut 
700 1 |a Taniguchi, Takashi  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaoqun  |e verfasserin  |4 aut 
700 1 |a Liang, Qi  |e verfasserin  |4 aut 
700 1 |a Jia, Jinfeng  |e verfasserin  |4 aut 
700 1 |a Urbakh, Michael  |e verfasserin  |4 aut 
700 1 |a Hod, Oded  |e verfasserin  |4 aut 
700 1 |a Ding, Feng  |e verfasserin  |4 aut 
700 1 |a Wang, Shiyong  |e verfasserin  |4 aut 
700 1 |a Shi, Zhiwen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 28 vom: 30. Juli, Seite e2200956  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:28  |g day:30  |g month:07  |g pages:e2200956 
856 4 0 |u http://dx.doi.org/10.1002/adma.202200956  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 28  |b 30  |c 07  |h e2200956