Different acyl-CoA:diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 73(2022), 9 vom: 13. Mai, Seite 3030-3043
1. Verfasser: Hatanaka, Tomoko (VerfasserIn)
Weitere Verfasser: Tomita, Yoshiki, Matsuoka, Daisuke, Sasayama, Daisuke, Fukayama, Hiroshi, Azuma, Tetsushi, Soltani Gishini, Mohammad Fazel, Hildebrand, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Arabidopsis thaliana Vernonia galamensis Acyl-CoA:diacylglycerol acyltransferase DGAT1 site-directed mutagenesis triacylglycerol yeast strain H1246 Acyl Coenzyme A Arabidopsis Proteins mehr... Diglycerides Plant Oils Triglycerides DGAT1 protein, Arabidopsis EC 2.3.1.20 Diacylglycerol O-Acyltransferase
LEADER 01000caa a22002652 4500
001 NLM340836636
003 DE-627
005 20231227130804.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erac084  |2 doi 
028 5 2 |a pubmed24n1225.xml 
035 |a (DE-627)NLM340836636 
035 |a (NLM)35560190 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hatanaka, Tomoko  |e verfasserin  |4 aut 
245 1 0 |a Different acyl-CoA:diacylglycerol acyltransferases vary widely in function, and a targeted amino acid substitution enhances oil accumulation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 17.05.2022 
500 |a Date Revised 13.12.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Triacylglycerols (TAGs) are the major component of plant storage lipids such as oils. Acyl-CoA:diacylglycerol acyltransferase (DGAT) catalyzes the final step of the Kennedy pathway, and is mainly responsible for plant oil accumulation. We previously found that the activity of Vernonia DGAT1 was distinctively higher than that of Arabidopsis and soybean DGAT1 in a yeast microsome assay. In this study, the DGAT1 cDNAs of Arabidopsis, Vernonia, soybean, and castor bean were introduced into Arabidopsis. All Vernonia DGAT1-expressing lines showed a significantly higher oil content (49% mean increase compared with the wild-type) followed by soybean and castor bean. Most Arabidopsis DGAT1-overexpressing lines did not show a significant increase. In addition to these four DGAT1 genes, sunflower, Jatropha, and sesame DGAT1 genes were introduced into a TAG biosynthesis-defective yeast mutant. In the yeast expression culture, DGAT1s from Arabidopsis, castor bean, and soybean only slightly increased the TAG content; however, DGAT1s from Vernonia, sunflower, Jatropha, and sesame increased TAG content >10-fold more than the former three DGAT1s. Three amino acid residues were characteristically common in the latter four DGAT1s. Using soybean DGAT1, these amino acid substitutions were created by site-directed mutagenesis and substantially increased the TAG content 
650 4 |a Journal Article 
650 4 |a Arabidopsis thaliana 
650 4 |a Vernonia galamensis 
650 4 |a Acyl-CoA:diacylglycerol acyltransferase 
650 4 |a DGAT1 
650 4 |a site-directed mutagenesis 
650 4 |a triacylglycerol 
650 4 |a yeast strain H1246 
650 7 |a Acyl Coenzyme A  |2 NLM 
650 7 |a Arabidopsis Proteins  |2 NLM 
650 7 |a Diglycerides  |2 NLM 
650 7 |a Plant Oils  |2 NLM 
650 7 |a Triglycerides  |2 NLM 
650 7 |a DGAT1 protein, Arabidopsis  |2 NLM 
650 7 |a EC 2.3.1.20  |2 NLM 
650 7 |a Diacylglycerol O-Acyltransferase  |2 NLM 
650 7 |a EC 2.3.1.20  |2 NLM 
700 1 |a Tomita, Yoshiki  |e verfasserin  |4 aut 
700 1 |a Matsuoka, Daisuke  |e verfasserin  |4 aut 
700 1 |a Sasayama, Daisuke  |e verfasserin  |4 aut 
700 1 |a Fukayama, Hiroshi  |e verfasserin  |4 aut 
700 1 |a Azuma, Tetsushi  |e verfasserin  |4 aut 
700 1 |a Soltani Gishini, Mohammad Fazel  |e verfasserin  |4 aut 
700 1 |a Hildebrand, David  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 73(2022), 9 vom: 13. Mai, Seite 3030-3043  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:73  |g year:2022  |g number:9  |g day:13  |g month:05  |g pages:3030-3043 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erac084  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 73  |j 2022  |e 9  |b 13  |c 05  |h 3030-3043