CAS(ME)3 : A Third Generation Facial Spontaneous Micro-Expression Database With Depth Information and High Ecological Validity

Micro-expression (ME) is a significant non-verbal communication clue that reveals one person's genuine emotional state. The development of micro-expression analysis (MEA) has just gained attention in the last decade. However, the small sample size problem constrains the use of deep learning on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 13. März, Seite 2782-2800
1. Verfasser: Li, Jingting (VerfasserIn)
Weitere Verfasser: Dong, Zizhao, Lu, Shaoyuan, Wang, Su-Jing, Yan, Wen-Jing, Ma, Yinhuan, Liu, Ye, Huang, Changbing, Fu, Xiaolan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM340835850
003 DE-627
005 20231226010358.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3174895  |2 doi 
028 5 2 |a pubmed24n1136.xml 
035 |a (DE-627)NLM340835850 
035 |a (NLM)35560102 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jingting  |e verfasserin  |4 aut 
245 1 0 |a CAS(ME)3  |b A Third Generation Facial Spontaneous Micro-Expression Database With Depth Information and High Ecological Validity 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2023 
500 |a Date Revised 09.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Micro-expression (ME) is a significant non-verbal communication clue that reveals one person's genuine emotional state. The development of micro-expression analysis (MEA) has just gained attention in the last decade. However, the small sample size problem constrains the use of deep learning on MEA. Besides, ME samples distribute in six different databases, leading to database bias. Moreover, the ME database development is complicated. In this article, we introduce a large-scale spontaneous ME database: CAS(ME) 3. The contribution of this article is summarized as follows: (1) CAS(ME) 3 offers around 80 hours of videos with over 8,000,000 frames, including manually labeled 1,109 MEs and 3,490 macro-expressions. Such a large sample size allows effective MEA method validation while avoiding database bias. (2) Inspired by psychological experiments, CAS(ME) 3 provides the depth information as an additional modality unprecedentedly, contributing to multi-modal MEA. (3) For the first time, CAS(ME) 3 elicits ME with high ecological validity using the mock crime paradigm, along with physiological and voice signals, contributing to practical MEA. (4) Besides, CAS(ME) 3 provides 1,508 unlabeled videos with more than 4,000,000 frames, i.e., a data platform for unsupervised MEA methods. (5) Finally, we demonstrate the effectiveness of depth information by the proposed depth flow algorithm and RGB-D information 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Dong, Zizhao  |e verfasserin  |4 aut 
700 1 |a Lu, Shaoyuan  |e verfasserin  |4 aut 
700 1 |a Wang, Su-Jing  |e verfasserin  |4 aut 
700 1 |a Yan, Wen-Jing  |e verfasserin  |4 aut 
700 1 |a Ma, Yinhuan  |e verfasserin  |4 aut 
700 1 |a Liu, Ye  |e verfasserin  |4 aut 
700 1 |a Huang, Changbing  |e verfasserin  |4 aut 
700 1 |a Fu, Xiaolan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 13. März, Seite 2782-2800  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:13  |g month:03  |g pages:2782-2800 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3174895  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 13  |c 03  |h 2782-2800