Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi0.8Mn0.1Co0.1O2-Graphite Cells

© 2022 American Chemical Society.

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 34(2022), 5 vom: 08. März, Seite 2034-2048
1. Verfasser: Björklund, Erik (VerfasserIn)
Weitere Verfasser: Xu, Chao, Dose, Wesley M, Sole, Christopher G, Thakur, Pardeep K, Lee, Tien-Lin, De Volder, Michael F L, Grey, Clare P, Weatherup, Robert S
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM340816368
003 DE-627
005 20231226010331.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.1c02722  |2 doi 
028 5 2 |a pubmed24n1136.xml 
035 |a (DE-627)NLM340816368 
035 |a (NLM)35557994 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Björklund, Erik  |e verfasserin  |4 aut 
245 1 0 |a Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi0.8Mn0.1Co0.1O2-Graphite Cells 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 American Chemical Society. 
520 |a Ni-rich lithium nickel manganese cobalt (NMC) oxide cathode materials promise Li-ion batteries with increased energy density and lower cost. However, higher Ni content is accompanied by accelerated degradation and thus poor cycle lifetime, with the underlying mechanisms and their relative contributions still poorly understood. Here, we combine electrochemical analysis with surface-sensitive X-ray photoelectron and absorption spectroscopies to observe the interfacial degradation occurring in LiNi0.8Mn0.1Co0.1O2-graphite full cells over hundreds of cycles between fixed cell voltages (2.5-4.2 V). Capacity losses during the first ∼200 cycles are primarily attributable to a loss of active lithium through electrolyte reduction on the graphite anode, seen as thickening of the solid-electrolyte interphase (SEI). As a result, the cathode reaches ever-higher potentials at the end of charge, and with further cycling, a regime is entered where losses in accessible NMC capacity begin to limit cycle life. This is accompanied by accelerated transition-metal reduction at the NMC surface, thickening of the cathode electrolyte interphase, decomposition of residual lithium carbonate, and increased cell impedance. Transition-metal dissolution is also detected through increased incorporation into and thickening of the SEI, with Mn found to be initially most prevalent, while the proportion of Ni increases with cycling. The observed evolution of anode and cathode surface layers improves our understanding of the interconnected nature of the degradation occurring at each electrode and the impact on capacity retention, informing efforts to achieve a longer cycle lifetime in Ni-rich NMCs 
650 4 |a Journal Article 
700 1 |a Xu, Chao  |e verfasserin  |4 aut 
700 1 |a Dose, Wesley M  |e verfasserin  |4 aut 
700 1 |a Sole, Christopher G  |e verfasserin  |4 aut 
700 1 |a Thakur, Pardeep K  |e verfasserin  |4 aut 
700 1 |a Lee, Tien-Lin  |e verfasserin  |4 aut 
700 1 |a De Volder, Michael F L  |e verfasserin  |4 aut 
700 1 |a Grey, Clare P  |e verfasserin  |4 aut 
700 1 |a Weatherup, Robert S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 34(2022), 5 vom: 08. März, Seite 2034-2048  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:5  |g day:08  |g month:03  |g pages:2034-2048 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.1c02722  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 5  |b 08  |c 03  |h 2034-2048