Adversarial Robustness Via Fisher-Rao Regularization

Adversarial robustness has become a topic of growing interest in machine learning since it was observed that neural networks tend to be brittle. We propose an information-geometric formulation of adversarial defense and introduce Fire, a new Fisher-Rao regularization for the categorical cross-entrop...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 12. März, Seite 2698-2710
1. Verfasser: Picot, Marine (VerfasserIn)
Weitere Verfasser: Messina, Francisco, Boudiaf, Malik, Labeau, Fabrice, Ayed, Ismail Ben, Piantanida, Pablo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article