Adversarial Robustness Via Fisher-Rao Regularization
Adversarial robustness has become a topic of growing interest in machine learning since it was observed that neural networks tend to be brittle. We propose an information-geometric formulation of adversarial defense and introduce Fire, a new Fisher-Rao regularization for the categorical cross-entrop...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 12. März, Seite 2698-2710
|
1. Verfasser: |
Picot, Marine
(VerfasserIn) |
Weitere Verfasser: |
Messina, Francisco,
Boudiaf, Malik,
Labeau, Fabrice,
Ayed, Ismail Ben,
Piantanida, Pablo |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |