Simulations of Friction Anisotropy on Self-Assembled Monolayers in Water

Molecular dynamics simulations were performed to study nanoscale friction on hydrophilic and hydrophobic self-assembled monolayers (SAMs) immersed in water. Sliding was simulated in two different directions to capture anisotropy due to the direction of motion relative to the inherent tilted orientat...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 20 vom: 24. Mai, Seite 6273-6280
1. Verfasser: Ahmad, Khurshid (VerfasserIn)
Weitere Verfasser: Yang, Quanpeng, Martini, Ashlie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM340774002
003 DE-627
005 20231226010228.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.1c03234  |2 doi 
028 5 2 |a pubmed24n1135.xml 
035 |a (DE-627)NLM340774002 
035 |a (NLM)35549237 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ahmad, Khurshid  |e verfasserin  |4 aut 
245 1 0 |a Simulations of Friction Anisotropy on Self-Assembled Monolayers in Water 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 24.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Molecular dynamics simulations were performed to study nanoscale friction on hydrophilic and hydrophobic self-assembled monolayers (SAMs) immersed in water. Sliding was simulated in two different directions to capture anisotropy due to the direction of motion relative to the inherent tilted orientation of the molecules. It was shown that friction depends on both hydrophobicity and sliding direction, with the highest friction observed for sliding on hydrophobic SAM in the direction against the initial orientation of the molecules. The origins of the friction trends were analyzed by differentiating the tip-SAM and tip-water force contributions to friction. The tip-water force was higher on the hydrophilic SAM, and this was shown to be due to the presence of a dense layer of water adjacent to the surface and hydrogen bonding. In contrast, the tip-SAM force was higher on the hydrophobic SAM due to a water depletion layer, which enabled the tip to be closer to the SAM terminal group. The higher-friction cases all exhibited greater penetration of the tip below the surface of the SAM, accommodated by further tilting and reorientation of the SAM molecules 
650 4 |a Journal Article 
700 1 |a Yang, Quanpeng  |e verfasserin  |4 aut 
700 1 |a Martini, Ashlie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 38(2022), 20 vom: 24. Mai, Seite 6273-6280  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:38  |g year:2022  |g number:20  |g day:24  |g month:05  |g pages:6273-6280 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.1c03234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 38  |j 2022  |e 20  |b 24  |c 05  |h 6273-6280