Silane-Based SAMs Deposited by Spin Coating as a Versatile Alternative Process to Solution Immersion

Functionalization of silica surfaces with silane-based self-assembled monolayers (SAMs) is widely used in material sciences to tune surface properties and introduce terminal functional groups enabling subsequent chemical surface reactions and immobilization of (bio)molecules. Here, we report on the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 38(2022), 20 vom: 24. Mai, Seite 6464-6471
1. Verfasser: Rouvière, Lisa (VerfasserIn)
Weitere Verfasser: Al-Hajj, Nisreen, Hunel, Julien, Aupetit, Christian, Buffeteau, Thierry, Vellutini, Luc, Genin, Emilie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Functionalization of silica surfaces with silane-based self-assembled monolayers (SAMs) is widely used in material sciences to tune surface properties and introduce terminal functional groups enabling subsequent chemical surface reactions and immobilization of (bio)molecules. Here, we report on the synthesis of four organotrimethoxysilanes with various molecular structures and we compare their grafting by spin coating with the one performed by the conventional solution immersion method. Strikingly, this study clearly demonstrates that the spin coating technique is a versatile, fast, and more convenient alternative process to prepare robust, smooth, and homogeneous SAMs with similar properties and quality as those deposited via immersion. SAMs were characterized by PM-IRRAS, AFM, and wettability measurements. SAMs can undergo several chemical surface modifications, and the reactivity of amine-terminated SAM was confirmed by PM-IRRAS and fluorescence measurements
Beschreibung:Date Revised 24.05.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c00668