Multimodal Unrolled Robust PCA for Background Foreground Separation

Background foreground separation (BFS) is a popular computer vision problem where dynamic foreground objects are separated from the static background of a scene. Typically, this is performed using consumer cameras because of their low cost, human interpretability, and high resolution. Yet, cameras a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 3553-3564
1. Verfasser: Markowitz, Spencer (VerfasserIn)
Weitere Verfasser: Snyder, Corey, Eldar, Yonina C, Do, Minh N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM340726881
003 DE-627
005 20250303082749.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3172851  |2 doi 
028 5 2 |a pubmed25n1135.xml 
035 |a (DE-627)NLM340726881 
035 |a (NLM)35544506 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Markowitz, Spencer  |e verfasserin  |4 aut 
245 1 0 |a Multimodal Unrolled Robust PCA for Background Foreground Separation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 19.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Background foreground separation (BFS) is a popular computer vision problem where dynamic foreground objects are separated from the static background of a scene. Typically, this is performed using consumer cameras because of their low cost, human interpretability, and high resolution. Yet, cameras and the BFS algorithms that process their data have common failure modes due to lighting changes, highly reflective surfaces, and occlusion. One solution is to incorporate an additional sensor modality that provides robustness to such failure modes. In this paper, we explore the ability of a cost-effective radar system to augment the popular Robust PCA technique for BFS. We apply the emerging technique of algorithm unrolling to yield real-time computation, feedforward inference, and strong generalization in comparison with traditional deep learning methods. We benchmark on the RaDICaL dataset to demonstrate both quantitative improvements of incorporating radar data and qualitative improvements that confirm robustness to common failure modes of image-based methods 
650 4 |a Journal Article 
700 1 |a Snyder, Corey  |e verfasserin  |4 aut 
700 1 |a Eldar, Yonina C  |e verfasserin  |4 aut 
700 1 |a Do, Minh N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 3553-3564  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:3553-3564 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3172851  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 3553-3564