Content-Aware Unsupervised Deep Homography Estimation and its Extensions

Homography estimation is a basic image alignment method in many applications. It is usually done by extracting and matching sparse feature points, which are error-prone in low-light and low-texture images. On the other hand, previous deep homography approaches use either synthetic images for supervi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 01. März, Seite 2849-2863
Auteur principal: Liu, Shuaicheng (Auteur)
Autres auteurs: Ye, Nianjin, Wang, Chuan, Zhang, Jirong, Jia, Lanpeng, Luo, Kunming, Wang, Jue, Sun, Jian
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM340651350
003 DE-627
005 20250303081958.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3174130  |2 doi 
028 5 2 |a pubmed25n1135.xml 
035 |a (DE-627)NLM340651350 
035 |a (NLM)35536823 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Shuaicheng  |e verfasserin  |4 aut 
245 1 0 |a Content-Aware Unsupervised Deep Homography Estimation and its Extensions 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Homography estimation is a basic image alignment method in many applications. It is usually done by extracting and matching sparse feature points, which are error-prone in low-light and low-texture images. On the other hand, previous deep homography approaches use either synthetic images for supervised learning or aerial images for unsupervised learning, both ignoring the importance of handling depth disparities and moving objects in real-world applications. To overcome these problems, in this work, we propose an unsupervised deep homography method with a new architecture design. In the spirit of the RANSAC procedure in traditional methods, we specifically learn an outlier mask to only select reliable regions for homography estimation. We calculate loss with respect to our learned deep features instead of directly comparing image content as did previously. To achieve the unsupervised training, we also formulate a novel triplet loss customized for our network. We verify our method by conducting comprehensive comparisons on a new dataset that covers a wide range of scenes with varying degrees of difficulties for the task. Experimental results reveal that our method outperforms the state-of-the-art, including deep solutions and feature-based solutions 
650 4 |a Journal Article 
700 1 |a Ye, Nianjin  |e verfasserin  |4 aut 
700 1 |a Wang, Chuan  |e verfasserin  |4 aut 
700 1 |a Zhang, Jirong  |e verfasserin  |4 aut 
700 1 |a Jia, Lanpeng  |e verfasserin  |4 aut 
700 1 |a Luo, Kunming  |e verfasserin  |4 aut 
700 1 |a Wang, Jue  |e verfasserin  |4 aut 
700 1 |a Sun, Jian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 01. März, Seite 2849-2863  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:01  |g month:03  |g pages:2849-2863 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3174130  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 01  |c 03  |h 2849-2863