Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild

Detecting objects and estimating their viewpoints in images are key tasks of 3D scene understanding. Recent approaches have achieved excellent results on very large benchmarks for object detection and viewpoint estimation. However, performances are still lagging behind for novel object categories wi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 3 vom: 01. März, Seite 3090-3106
1. Verfasser: Xiao, Yang (VerfasserIn)
Weitere Verfasser: Lepetit, Vincent, Marlet, Renaud
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM340651318
003 DE-627
005 20231226005858.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3174072  |2 doi 
028 5 2 |a pubmed24n1135.xml 
035 |a (DE-627)NLM340651318 
035 |a (NLM)35536822 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiao, Yang  |e verfasserin  |4 aut 
245 1 0 |a Few-Shot Object Detection and Viewpoint Estimation for Objects in the Wild 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 07.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Detecting objects and estimating their viewpoints in images are key tasks of 3D scene understanding. Recent approaches have achieved excellent results on very large benchmarks for object detection and viewpoint estimation. However, performances are still lagging behind for novel object categories with few samples. In this paper, we tackle the problems of few-shot object detection and few-shot viewpoint estimation. We demonstrate on both tasks the benefits of guiding the network prediction with class-representative features extracted from data in different modalities: image patches for object detection, and aligned 3D models for viewpoint estimation. Despite its simplicity, our method outperforms state-of-the-art methods by a large margin on a range of datasets, including PASCAL and COCO for few-shot object detection, and Pascal3D+ and ObjectNet3D for few-shot viewpoint estimation. Furthermore, when the 3D model is not available, we introduce a simple category-agnostic viewpoint estimation method by exploiting geometrical similarities and consistent pose labeling across different classes. While it moderately reduces performance, this approach still obtains better results than previous methods in this setting. Last, for the first time, we tackle the combination of both few-shot tasks, on three challenging benchmarks for viewpoint estimation in the wild, ObjectNet3D, Pascal3D+ and Pix3D, showing very promising results 
650 4 |a Journal Article 
700 1 |a Lepetit, Vincent  |e verfasserin  |4 aut 
700 1 |a Marlet, Renaud  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 3 vom: 01. März, Seite 3090-3106  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:3  |g day:01  |g month:03  |g pages:3090-3106 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3174072  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 3  |b 01  |c 03  |h 3090-3106