Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 73(2022), 14 vom: 11. Aug., Seite 5033-5051
Auteur principal: Verma, Lokesh (Auteur)
Autres auteurs: Bhadouria, Jyoti, Bhunia, Rupam Kumar, Singh, Shweta, Panchal, Poonam, Bhatia, Chitra, Eastmond, Peter J, Giri, Jitender
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Research Support, Non-U.S. Gov't Diacylglycerol lateral roots lipids phosphate acquisition efficiency (PAE) phosphatidic acid phosphorus deficiency phosphorus utilization efficiency (PUE) Diglycerides plus... Membrane Lipids Phosphates Phospholipids Galactosyltransferases EC 2.4.1.- 1,2-diacylglycerol 3-beta-galactosyltransferase EC 2.4.1.46
LEADER 01000caa a22002652c 4500
001 NLM340546727
003 DE-627
005 20250303080823.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erac192  |2 doi 
028 5 2 |a pubmed25n1134.xml 
035 |a (DE-627)NLM340546727 
035 |a (NLM)35526193 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Verma, Lokesh  |e verfasserin  |4 aut 
245 1 0 |a Monogalactosyl diacylglycerol synthase 3 affects phosphate utilization and acquisition in rice 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.08.2022 
500 |a Date Revised 09.09.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a Galactolipids are essential to compensate for the loss of phospholipids by 'membrane lipid remodelling' in plants under phosphorus (P) deficiency conditions. Monogalactosyl diacylglycerol (MGDG) synthases catalyse the synthesis of MGDG which is further converted into digalactosyl diacylglycerol (DGDG), later replacing phospholipids in the extraplastidial membranes. However, the roles of these enzymes are not well explored in rice. In this study, the rice MGDG synthase 3 gene (OsMGD3) was identified and functionally characterized. We showed that the plant phosphate (Pi) status and the transcription factor PHOSPHATE STARVATION RESPONSE 2 (OsPHR2) are involved in the transcriptional regulation of OsMGD3. CRISPR/Cas9 knockout and overexpression lines of OsMGD3 were generated to explore its potential role in rice adaptation to Pi deficiency. Compared with the wild type, OsMGD3 knockout lines displayed a reduced Pi acquisition and utilization while overexpression lines showed an enhancement of the same. Further, OsMGD3 showed a predominant role in roots, altering lateral root growth. Our comprehensive lipidomic analysis revealed a role of OsMGD3 in membrane lipid remodelling, in addition to a role in regulating diacylglycerol and phosphatidic acid contents that affected the expression of Pi transporters. Our study highlights the role of OsMGD3 in affecting both internal P utilization and P acquisition in rice 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Diacylglycerol 
650 4 |a lateral roots 
650 4 |a lipids 
650 4 |a phosphate acquisition efficiency (PAE) 
650 4 |a phosphatidic acid 
650 4 |a phosphorus deficiency 
650 4 |a phosphorus utilization efficiency (PUE) 
650 7 |a Diglycerides  |2 NLM 
650 7 |a Membrane Lipids  |2 NLM 
650 7 |a Phosphates  |2 NLM 
650 7 |a Phospholipids  |2 NLM 
650 7 |a Galactosyltransferases  |2 NLM 
650 7 |a EC 2.4.1.-  |2 NLM 
650 7 |a 1,2-diacylglycerol 3-beta-galactosyltransferase  |2 NLM 
650 7 |a EC 2.4.1.46  |2 NLM 
700 1 |a Bhadouria, Jyoti  |e verfasserin  |4 aut 
700 1 |a Bhunia, Rupam Kumar  |e verfasserin  |4 aut 
700 1 |a Singh, Shweta  |e verfasserin  |4 aut 
700 1 |a Panchal, Poonam  |e verfasserin  |4 aut 
700 1 |a Bhatia, Chitra  |e verfasserin  |4 aut 
700 1 |a Eastmond, Peter J  |e verfasserin  |4 aut 
700 1 |a Giri, Jitender  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 73(2022), 14 vom: 11. Aug., Seite 5033-5051  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnas 
773 1 8 |g volume:73  |g year:2022  |g number:14  |g day:11  |g month:08  |g pages:5033-5051 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erac192  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 73  |j 2022  |e 14  |b 11  |c 08  |h 5033-5051