High-Performance Organic Solar Modules via Bilayer-Merged-Annealing Assisted Blade Coating

© 2022 Wiley-VCH GmbH.

Détails bibliographiques
Publié dans:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 28 vom: 07. Juli, Seite e2110569
Auteur principal: Fan, Jing-Yuan (Auteur)
Autres auteurs: Liu, Zhi-Xi, Rao, Jack, Yan, Kangrong, Chen, Zeng, Ran, Yixin, Yan, Buyi, Yao, Jizhong, Lu, Guanghao, Zhu, Haiming, Li, Chang-Zhi, Chen, Hongzheng
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Advanced materials (Deerfield Beach, Fla.)
Sujets:Journal Article blade-coating charge-transport layers large-area merged annealing modules organic solar cells
Description
Résumé:© 2022 Wiley-VCH GmbH.
Although encouraging progress is being made on spin-coated prototype cells, organic solar cells (OSCs) still face significant challenges, yet to be explored, for upscaling the multi-stacked photoactive layers in the construction of large-area modules. Herein, high-performance opaque and semitransparent organic solar modules are developed via a bilayer-merged-annealing (BMA)-assisted blade-coating strategy, achieving impressive efficiencies of 14.79% and 12.01% with respect to active area of 18.73 cm2 , which represent the best organic solar minimodules so far. It is revealed that the BMA strategy effectively resolves the de-wetting issues between polar charge transport layer solution and non-polar bulk heterojunction blends, hence improving the film coverage, along with electronic and electric contacts of multi-stacked photoactive layers. As result, organic solar modules coated under ambient conditions successfully retain the high-efficiency of small-area cells upon 312 times area scaling-up. Overall, this work provides a facile and effective method to fabricate high-performance organic solar modules under ambient conditions
Description:Date Revised 14.07.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202110569