|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM340509821 |
003 |
DE-627 |
005 |
20231226005438.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202203049
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1134.xml
|
035 |
|
|
|a (DE-627)NLM340509821
|
035 |
|
|
|a (NLM)35522456
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Weizheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Recyclable, Healable, and Tough Ionogels Insensitive to Crack Propagation
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 14.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Most gels and elastomers introduce sacrificial bonds in the covalent network to dissipate energy. However, long-term cyclic loading caused irreversible fatigue damage and crack propagation cannot be prevented. Furthermore, because of the irreversible covalent crosslinked networks, it is a huge challenge to implement reversible mechanical interlocking and reorganize the polymer segments to realize the recycling and reuse of ionogels. Here, covalent crosslinking of host materials is replaced with entanglement. The entangled microdomains are used as physical crosslinking while introducing reversible bond interactions. The interpenetrating, entangled, and elastic microdomains of linear segments and covalent-network microspheres provide mechanical stability, eliminate stress concentration at the crack tip under load, and achieve unprecedented tear and fatigue resistance of ionogels in any load direction. Moreover, reversible entanglements and noncovalent interactions can be disentangled and recombined to achieve recycling and mechanical regeneration, and the recyclability of covalent-network microdomains is realized
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a crack propagation
|
650 |
|
4 |
|a electrical sensing
|
650 |
|
4 |
|a ionogels
|
650 |
|
4 |
|a recyclable
|
650 |
|
4 |
|a reversible entanglement
|
700 |
1 |
|
|a Li, Lingling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Sijie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Ziyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Xiuyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Zhe
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Guo, Jiangna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Feng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 28 vom: 02. Juli, Seite e2203049
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:28
|g day:02
|g month:07
|g pages:e2203049
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202203049
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 28
|b 02
|c 07
|h e2203049
|