Integrating BiC Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage

© 2022 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 28 vom: 05. Juli, Seite e2202673
1. Verfasser: Liang, Yazhan (VerfasserIn)
Weitere Verfasser: Song, Ning, Zhang, Zhengchunyu, Chen, Weihua, Feng, Jinkui, Xi, Baojuan, Xiong, Shenglin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Bi@C nanospheres anodes hard carbon frameworks sodium-ion batteries ultrahigh rate capability
LEADER 01000naa a22002652 4500
001 NLM340427477
003 DE-627
005 20231226005215.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202202673  |2 doi 
028 5 2 |a pubmed24n1134.xml 
035 |a (DE-627)NLM340427477 
035 |a (NLM)35514175 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Yazhan  |e verfasserin  |4 aut 
245 1 0 |a Integrating BiC Nanospheres in Porous Hard Carbon Frameworks for Ultrafast Sodium Storage 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 14.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley-VCH GmbH. 
520 |a Sodium-ion batteries (SIBs) have emerged as an alternative technology because of their merits in abundance and cost. Realizing their real applications, however, remains a formidable challenge. One is that among the limitations of anode materials, the alloy-type candidates tolerate fast capacity fading during cycling. Here, a 3D framework superstructure assembled with carbon nanobelt arrays decorated with a metallic bismuth (Bi) nanospheres coated carbon layer by thermolysis of Bi-based metal-organic framework nanorods is synthesized as an anode material for SIBs. Due to the unique structural superiority, the anode design promotes excellent sodium-storage performance in terms of high capacity, excellent cycling stability, and ultrahigh rate capability up to 80 A g-1 with a capacity of 308.8 mAh g-1 . The unprecedented sodium-storage ability is not only attributed to the unique hybrid architecture, but also to the production of a homogeneous and thin solid electrolyte interface layer and the formation of uniform porous nanostructures during cycling in the ether-based electrolyte. Importantly, deeper understanding of the underlying cause of the performance improvement is illuminated, which is vital to provide the theoretical basis for application of SIBs 
650 4 |a Journal Article 
650 4 |a Bi@C nanospheres 
650 4 |a anodes 
650 4 |a hard carbon frameworks 
650 4 |a sodium-ion batteries 
650 4 |a ultrahigh rate capability 
700 1 |a Song, Ning  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhengchunyu  |e verfasserin  |4 aut 
700 1 |a Chen, Weihua  |e verfasserin  |4 aut 
700 1 |a Feng, Jinkui  |e verfasserin  |4 aut 
700 1 |a Xi, Baojuan  |e verfasserin  |4 aut 
700 1 |a Xiong, Shenglin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 28 vom: 05. Juli, Seite e2202673  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:34  |g year:2022  |g number:28  |g day:05  |g month:07  |g pages:e2202673 
856 4 0 |u http://dx.doi.org/10.1002/adma.202202673  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 28  |b 05  |c 07  |h e2202673