An Individual-Difference-Aware Model for Cross-Person Gaze Estimation

We propose a novel method on refining cross-person gaze prediction task with eye/face images only by explicitly modelling the person-specific differences. Specifically, we first assume that we can obtain some initial gaze prediction results with existing method, which we refer to as InitNet, and the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 05., Seite 3322-3333
1. Verfasser: Bao, Jun (VerfasserIn)
Weitere Verfasser: Liu, Buyu, Yu, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM340404868
003 DE-627
005 20231226005135.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3171416  |2 doi 
028 5 2 |a pubmed24n1134.xml 
035 |a (DE-627)NLM340404868 
035 |a (NLM)35511852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bao, Jun  |e verfasserin  |4 aut 
245 1 3 |a An Individual-Difference-Aware Model for Cross-Person Gaze Estimation 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.05.2022 
500 |a Date Revised 16.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a We propose a novel method on refining cross-person gaze prediction task with eye/face images only by explicitly modelling the person-specific differences. Specifically, we first assume that we can obtain some initial gaze prediction results with existing method, which we refer to as InitNet, and then introduce three modules, the Validity Module (VM), Self-Calibration (SC) and Person-specific Transform (PT) module. By predicting the reliability of current eye/face images, VM is able to identify invalid samples, e.g. eye blinking images, and reduce their effects in modelling process. SC and PT module then learn to compensate for the differences on valid samples only. The former models the translation offsets by bridging the gap between initial predictions and dataset-wise distribution. And the later learns more general person-specific transformation by incorporating the information from existing initial predictions of the same person. We validate our ideas on three publicly available datasets, EVE, XGaze, and MPIIGaze dataset. We demonstrate that our proposed method outperforms the SOTA methods significantly on all of them, e.g. respectively 21.7%, 36.0%, and 32.9% relative performance improvements. We are the winner of the GAZE 2021 EVE Challenge and our code can be found here https://github.com/bjj9/EVE_SCPT 
650 4 |a Journal Article 
700 1 |a Liu, Buyu  |e verfasserin  |4 aut 
700 1 |a Yu, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 05., Seite 3322-3333  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:05  |g pages:3322-3333 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3171416  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 05  |h 3322-3333