In situ determination of the extreme damage resistance behavior in stomatopod dactyl club

open access.

Bibliographische Detailangaben
Veröffentlicht in:Journal of synchrotron radiation. - 1994. - 29(2022), Pt 3 vom: 01. Mai, Seite 775-786
1. Verfasser: Dong, Zheng (VerfasserIn)
Weitere Verfasser: Chen, Sen, Gupta, Himadri S, Zhao, Xiaoyi, Yang, Yiming, Chang, Guangcai, Xue, Jian, Zhang, Yiyang, Luo, Shengnian, Dong, Yuhui, Zhang, Yi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of synchrotron radiation
Schlagworte:Journal Article 3D crack evolution fiber bridging in situ characterization stomatopod dactyl toughening mechanisms
LEADER 01000caa a22002652c 4500
001 NLM340396520
003 DE-627
005 20250303075227.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577522001217  |2 doi 
028 5 2 |a pubmed25n1134.xml 
035 |a (DE-627)NLM340396520 
035 |a (NLM)35511010 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dong, Zheng  |e verfasserin  |4 aut 
245 1 0 |a In situ determination of the extreme damage resistance behavior in stomatopod dactyl club 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a open access. 
520 |a The structure and mechanical properties of the stomatopod dactyl club have been studied extensively for its extreme impact tolerance, but a systematic in situ investigation on the multiscale mechanical responses under high-speed impact has not been reported. Here the full dynamic deformation and crack evolution process within projectile-impacted dactyl using combined fast 2D X-ray imaging and high-resolution ex situ tomography are revealed. The results show that hydration states can lead to significantly different toughening mechanisms inside dactyl under dynamic loading. A previously unreported 3D interlocking structural design in the impact surface and impact region is reported using nano X-ray tomography. Experimental results and dynamic finite-element modeling suggest this unique structure plays an important role in resisting catastrophic structural damage and hindering crack propagation. This work is a contribution to understanding the key toughening strategies of biological materials and provides valuable information for biomimetic manufacturing of impact-resistant materials in general 
650 4 |a Journal Article 
650 4 |a 3D crack evolution 
650 4 |a fiber bridging 
650 4 |a in situ characterization 
650 4 |a stomatopod dactyl 
650 4 |a toughening mechanisms 
700 1 |a Chen, Sen  |e verfasserin  |4 aut 
700 1 |a Gupta, Himadri S  |e verfasserin  |4 aut 
700 1 |a Zhao, Xiaoyi  |e verfasserin  |4 aut 
700 1 |a Yang, Yiming  |e verfasserin  |4 aut 
700 1 |a Chang, Guangcai  |e verfasserin  |4 aut 
700 1 |a Xue, Jian  |e verfasserin  |4 aut 
700 1 |a Zhang, Yiyang  |e verfasserin  |4 aut 
700 1 |a Luo, Shengnian  |e verfasserin  |4 aut 
700 1 |a Dong, Yuhui  |e verfasserin  |4 aut 
700 1 |a Zhang, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 29(2022), Pt 3 vom: 01. Mai, Seite 775-786  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnas 
773 1 8 |g volume:29  |g year:2022  |g number:Pt 3  |g day:01  |g month:05  |g pages:775-786 
856 4 0 |u http://dx.doi.org/10.1107/S1600577522001217  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 29  |j 2022  |e Pt 3  |b 01  |c 05  |h 775-786