|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM340396520 |
003 |
DE-627 |
005 |
20250303075227.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1107/S1600577522001217
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1134.xml
|
035 |
|
|
|a (DE-627)NLM340396520
|
035 |
|
|
|a (NLM)35511010
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dong, Zheng
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a In situ determination of the extreme damage resistance behavior in stomatopod dactyl club
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 09.05.2022
|
500 |
|
|
|a Date Revised 16.07.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a open access.
|
520 |
|
|
|a The structure and mechanical properties of the stomatopod dactyl club have been studied extensively for its extreme impact tolerance, but a systematic in situ investigation on the multiscale mechanical responses under high-speed impact has not been reported. Here the full dynamic deformation and crack evolution process within projectile-impacted dactyl using combined fast 2D X-ray imaging and high-resolution ex situ tomography are revealed. The results show that hydration states can lead to significantly different toughening mechanisms inside dactyl under dynamic loading. A previously unreported 3D interlocking structural design in the impact surface and impact region is reported using nano X-ray tomography. Experimental results and dynamic finite-element modeling suggest this unique structure plays an important role in resisting catastrophic structural damage and hindering crack propagation. This work is a contribution to understanding the key toughening strategies of biological materials and provides valuable information for biomimetic manufacturing of impact-resistant materials in general
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a 3D crack evolution
|
650 |
|
4 |
|a fiber bridging
|
650 |
|
4 |
|a in situ characterization
|
650 |
|
4 |
|a stomatopod dactyl
|
650 |
|
4 |
|a toughening mechanisms
|
700 |
1 |
|
|a Chen, Sen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gupta, Himadri S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Xiaoyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Yiming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chang, Guangcai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xue, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yiyang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Luo, Shengnian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Dong, Yuhui
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of synchrotron radiation
|d 1994
|g 29(2022), Pt 3 vom: 01. Mai, Seite 775-786
|w (DE-627)NLM09824129X
|x 1600-5775
|7 nnas
|
773 |
1 |
8 |
|g volume:29
|g year:2022
|g number:Pt 3
|g day:01
|g month:05
|g pages:775-786
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1107/S1600577522001217
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_2005
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2022
|e Pt 3
|b 01
|c 05
|h 775-786
|