LEADER 01000caa a22002652 4500
001 NLM340396369
003 DE-627
005 20240923232928.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600577522001862  |2 doi 
028 5 2 |a pubmed24n1545.xml 
035 |a (DE-627)NLM340396369 
035 |a (NLM)35510993 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wells, Daniel J  |e verfasserin  |4 aut 
245 1 0 |a Observations of phase changes in monoolein during high viscous injection 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.05.2022 
500 |a Date Revised 23.09.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a open access. 
520 |a Serial crystallography of membrane proteins often employs high-viscosity injectors (HVIs) to deliver micrometre-sized crystals to the X-ray beam. Typically, the carrier medium is a lipidic cubic phase (LCP) media, which can also be used to nucleate and grow the crystals. However, despite the fact that the LCP is widely used with HVIs, the potential impact of the injection process on the LCP structure has not been reported and hence is not yet well understood. The self-assembled structure of the LCP can be affected by pressure, dehydration and temperature changes, all of which occur during continuous flow injection. These changes to the LCP structure may in turn impact the results of X-ray diffraction measurements from membrane protein crystals. To investigate the influence of HVIs on the structure of the LCP we conducted a study of the phase changes in monoolein/water and monoolein/buffer mixtures during continuous flow injection, at both atmospheric pressure and under vacuum. The reservoir pressure in the HVI was tracked to determine if there is any correlation with the phase behaviour of the LCP. The results indicated that, even though the reservoir pressure underwent (at times) significant variation, this did not appear to correlate with observed phase changes in the sample stream or correspond to shifts in the LCP lattice parameter. During vacuum injection, there was a three-way coexistence of the gyroid cubic phase, diamond cubic phase and lamellar phase. During injection at atmospheric pressure, the coexistence of a cubic phase and lamellar phase in the monoolein/water mixtures was also observed. The degree to which the lamellar phase is formed was found to be strongly dependent on the co-flowing gas conditions used to stabilize the LCP stream. A combination of laboratory-based optical polarization microscopy and simulation studies was used to investigate these observations 
650 4 |a Journal Article 
650 4 |a continuous flow 
650 4 |a cooling effect 
650 4 |a high-viscosity injection 
650 4 |a lipidic cubic phase 
650 4 |a monoolein 
650 7 |a Glycerides  |2 NLM 
650 7 |a Lipids  |2 NLM 
650 7 |a Membrane Proteins  |2 NLM 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
650 7 |a monoolein  |2 NLM 
650 7 |a C4YAD5F5G6  |2 NLM 
700 1 |a Berntsen, Peter  |e verfasserin  |4 aut 
700 1 |a Balaur, Eugeniu  |e verfasserin  |4 aut 
700 1 |a Kewish, Cameron M  |e verfasserin  |4 aut 
700 1 |a Adams, Patrick  |e verfasserin  |4 aut 
700 1 |a Aquila, Andrew  |e verfasserin  |4 aut 
700 1 |a Binns, Jack  |e verfasserin  |4 aut 
700 1 |a Boutet, Sébastien  |e verfasserin  |4 aut 
700 1 |a Broomhall, Hayden  |e verfasserin  |4 aut 
700 1 |a Caleman, Carl  |e verfasserin  |4 aut 
700 1 |a Christofferson, Andrew  |e verfasserin  |4 aut 
700 1 |a Conn, Charlotte E  |e verfasserin  |4 aut 
700 1 |a Dahlqvist, Caroline  |e verfasserin  |4 aut 
700 1 |a Flueckiger, Leonie  |e verfasserin  |4 aut 
700 1 |a Gian Roque, Francisco  |e verfasserin  |4 aut 
700 1 |a Greaves, Tamar L  |e verfasserin  |4 aut 
700 1 |a Hejazian, Majid  |e verfasserin  |4 aut 
700 1 |a Hunter, Mark  |e verfasserin  |4 aut 
700 1 |a Hadian Jazi, Marjan  |e verfasserin  |4 aut 
700 1 |a Jönsson, H Olof  |e verfasserin  |4 aut 
700 1 |a Pathirannahalage, Sachini Kadaoluwa  |e verfasserin  |4 aut 
700 1 |a Kirian, Richard A  |e verfasserin  |4 aut 
700 1 |a Kozlov, Alex  |e verfasserin  |4 aut 
700 1 |a Kurta, Ruslan P  |e verfasserin  |4 aut 
700 1 |a Marman, Hugh  |e verfasserin  |4 aut 
700 1 |a Mendez, Derek  |e verfasserin  |4 aut 
700 1 |a Morgan, Andrew  |e verfasserin  |4 aut 
700 1 |a Nugent, Keith  |e verfasserin  |4 aut 
700 1 |a Oberthuer, Dominik  |e verfasserin  |4 aut 
700 1 |a Quiney, Harry  |e verfasserin  |4 aut 
700 1 |a Reinhardt, Juliane  |e verfasserin  |4 aut 
700 1 |a Saha, Saumitra  |e verfasserin  |4 aut 
700 1 |a Sellberg, Jonas A  |e verfasserin  |4 aut 
700 1 |a Sierra, Raymond  |e verfasserin  |4 aut 
700 1 |a Wiedorn, Max  |e verfasserin  |4 aut 
700 1 |a Abbey, Brian  |e verfasserin  |4 aut 
700 1 |a Martin, Andrew V  |e verfasserin  |4 aut 
700 1 |a Darmanin, Connie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of synchrotron radiation  |d 1994  |g 29(2022), Pt 3 vom: 01. Mai, Seite 602-614  |w (DE-627)NLM09824129X  |x 1600-5775  |7 nnns 
773 1 8 |g volume:29  |g year:2022  |g number:Pt 3  |g day:01  |g month:05  |g pages:602-614 
856 4 0 |u http://dx.doi.org/10.1107/S1600577522001862  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_40 
912 |a GBV_ILN_350 
912 |a GBV_ILN_2005 
951 |a AR 
952 |d 29  |j 2022  |e Pt 3  |b 01  |c 05  |h 602-614