Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing

© 2022 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 43(2022), 17 vom: 30. Juni, Seite 1186-1200
1. Verfasser: Gupta, Abhinav (VerfasserIn)
Weitere Verfasser: Verma, Shivani, Javed, Ramsha, Sudhakar, Suraj, Srivastava, Saurabh, Nair, Nisanth N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't alanine pentapeptide alanine tripeptide artificial neural network deacylation free energy calculations parallel bias Metadynamics temperature accelerate sliced sampling umbrella sampling mehr... weighted histogram analysis β-lactamase Alanine OF5P57N2ZX
LEADER 01000naa a22002652 4500
001 NLM340394323
003 DE-627
005 20231226005116.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.26882  |2 doi 
028 5 2 |a pubmed24n1134.xml 
035 |a (DE-627)NLM340394323 
035 |a (NLM)35510789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gupta, Abhinav  |e verfasserin  |4 aut 
245 1 0 |a Exploration of high dimensional free energy landscapes by a combination of temperature-accelerated sliced sampling and parallel biasing 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.05.2022 
500 |a Date Revised 07.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a Temperature-accelerated sliced sampling (TASS) is an enhanced sampling method for achieving accelerated and controlled exploration of high-dimensional free energy landscapes in molecular dynamics simulations. With the aid of umbrella bias potentials, the TASS method realizes a controlled exploration and divide-and-conquer strategy for computing high-dimensional free energy surfaces. In TASS, diffusion of the system in the collective variable (CV) space is enhanced with the help of metadynamics bias and elevated-temperature of the auxiliary degrees of freedom (DOF) that are coupled to the CVs. Usually, a low-dimensional metadynamics bias is applied in TASS. In order to further improve the performance of TASS, we propose here to use a highdimensional metadynamics bias, in the same form as in a parallel bias metadynamics scheme. Here, a modified reweighting scheme, in combination with artificial neural network is used for computing unbiased probability distribution of CVs and projections of high-dimensional free energy surfaces. We first validate the accuracy and efficiency of our method in computing the four-dimensional free energy landscape for alanine tripeptide in vacuo. Subsequently, we employ the approach to calculate the eight-dimensional free energy landscape of alanine pentapeptide in vacuo. Finally, the method is applied to a more realistic problem wherein we compute the broad four-dimensional free energy surface corresponding to the deacylation of a drug molecule which is covalently complexed with a β-lactamase enzyme. We demonstrate that using parallel bias in TASS improves the efficiency of exploration of high-dimensional free energy landscapes 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a alanine pentapeptide 
650 4 |a alanine tripeptide 
650 4 |a artificial neural network 
650 4 |a deacylation 
650 4 |a free energy calculations 
650 4 |a parallel bias Metadynamics 
650 4 |a temperature accelerate sliced sampling 
650 4 |a umbrella sampling 
650 4 |a weighted histogram analysis 
650 4 |a β-lactamase 
650 7 |a Alanine  |2 NLM 
650 7 |a OF5P57N2ZX  |2 NLM 
700 1 |a Verma, Shivani  |e verfasserin  |4 aut 
700 1 |a Javed, Ramsha  |e verfasserin  |4 aut 
700 1 |a Sudhakar, Suraj  |e verfasserin  |4 aut 
700 1 |a Srivastava, Saurabh  |e verfasserin  |4 aut 
700 1 |a Nair, Nisanth N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 43(2022), 17 vom: 30. Juni, Seite 1186-1200  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:43  |g year:2022  |g number:17  |g day:30  |g month:06  |g pages:1186-1200 
856 4 0 |u http://dx.doi.org/10.1002/jcc.26882  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2022  |e 17  |b 30  |c 06  |h 1186-1200