Multi-Manifold Deep Discriminative Cross-Modal Hashing for Medical Image Retrieval

Benefitting from the low storage cost and high retrieval efficiency, hash learning has become a widely used retrieval technology to approximate nearest neighbors. Within it, the cross-modal medical hashing has attracted an increasing attention in facilitating efficiently clinical decision. However,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 11., Seite 3371-3385
1. Verfasser: Xu, Liming (VerfasserIn)
Weitere Verfasser: Zeng, Xianhua, Zheng, Bochuan, Li, Weisheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM340363010
003 DE-627
005 20231226005020.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3171081  |2 doi 
028 5 2 |a pubmed24n1134.xml 
035 |a (DE-627)NLM340363010 
035 |a (NLM)35507618 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Liming  |e verfasserin  |4 aut 
245 1 0 |a Multi-Manifold Deep Discriminative Cross-Modal Hashing for Medical Image Retrieval 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.05.2022 
500 |a Date Revised 11.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Benefitting from the low storage cost and high retrieval efficiency, hash learning has become a widely used retrieval technology to approximate nearest neighbors. Within it, the cross-modal medical hashing has attracted an increasing attention in facilitating efficiently clinical decision. However, there are still two main challenges in weak multi-manifold structure perseveration across multiple modalities and weak discriminability of hash code. Specifically, existing cross-modal hashing methods focus on pairwise relations within two modalities, and ignore underlying multi-manifold structures across over 2 modalities. Then, there is little consideration about discriminability, i.e., any pair of hash codes should be different. In this paper, we propose a novel hashing method named multi-manifold deep discriminative cross-modal hashing (MDDCH) for large-scale medical image retrieval. The key point is multi-modal manifold similarity which integrates multiple sub-manifolds defined on heterogeneous data to preserve correlation among instances, and it can be measured by three-step connection on corresponding hetero-manifold. Then, we propose discriminative item to make each hash code encoded by hash functions be different, which improves discriminative performance of hash code. Besides, we introduce Gaussian-binary Restricted Boltzmann Machine to directly output hash codes without using any continuous relaxation. Experiments on three benchmark datasets (AIBL, Brain and SPLP) show that our proposed MDDCH achieves comparative performance to recent state-of-the-art hashing methods. Additionally, diagnostic evaluation from professional physicians shows that all the retrieved medical images describe the same object and illness as the queried image 
650 4 |a Journal Article 
700 1 |a Zeng, Xianhua  |e verfasserin  |4 aut 
700 1 |a Zheng, Bochuan  |e verfasserin  |4 aut 
700 1 |a Li, Weisheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 11., Seite 3371-3385  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:11  |g pages:3371-3385 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3171081  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 11  |h 3371-3385