Study on auxiliary operation control of machine learning in multiobjective complex drainage system

Recently, urban waterlogging prevention and treatment of black-odorous rivers have become a social concern and the upgradation of drainage system and the development of river runoff pollution control projects have accelerated. The use of deep tunnels to upgrade old drainage systems and achieve pollu...

Description complète

Détails bibliographiques
Publié dans:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 85(2022), 8 vom: 15. Apr., Seite 2277-2294
Auteur principal: Li, Pengcheng (Auteur)
Autres auteurs: Zhou, Shihua, Cao, Jing, Xu, Wenzheng, Zhou, Juanjuan
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Water science and technology : a journal of the International Association on Water Pollution Research
Sujets:Journal Article Water 059QF0KO0R
LEADER 01000caa a22002652c 4500
001 NLM34015280X
003 DE-627
005 20250303072606.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.2166/wst.2022.114  |2 doi 
028 5 2 |a pubmed25n1133.xml 
035 |a (DE-627)NLM34015280X 
035 |a (NLM)35486455 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Pengcheng  |e verfasserin  |4 aut 
245 1 0 |a Study on auxiliary operation control of machine learning in multiobjective complex drainage system 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2022 
500 |a Date Revised 03.05.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Recently, urban waterlogging prevention and treatment of black-odorous rivers have become a social concern and the upgradation of drainage system and the development of river runoff pollution control projects have accelerated. The use of deep tunnels to upgrade old drainage systems and achieve pollution control-related engineering designs has complicated the drainage system operation control. The traditional operation control mainly relies on human experience or model simulation. This study provides a perspective of machine learning for controlling the operation of the drainage system and exploring whether the operation suggestions regarding facilities in this system can be given in real time while relying only on real-time data and avoiding the complex model simulation process. Herein, five drainage systems were used as examples: the initial water level of a pipeline, key point water level flow, pump station front pool water level, and most unfavorable point water level were selected as relevant variables and four machine-learning discrimination methods were used for to analyze the weir-lowering operation of a deep tunnel. This study found that the average error rate of the linear discrimination method was <10%, thereby exhibiting satisfactory performance. This study provides insights for improving the operation of complex drainage systems 
650 4 |a Journal Article 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Zhou, Shihua  |e verfasserin  |4 aut 
700 1 |a Cao, Jing  |e verfasserin  |4 aut 
700 1 |a Xu, Wenzheng  |e verfasserin  |4 aut 
700 1 |a Zhou, Juanjuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water science and technology : a journal of the International Association on Water Pollution Research  |d 1986  |g 85(2022), 8 vom: 15. Apr., Seite 2277-2294  |w (DE-627)NLM098149431  |x 0273-1223  |7 nnas 
773 1 8 |g volume:85  |g year:2022  |g number:8  |g day:15  |g month:04  |g pages:2277-2294 
856 4 0 |u http://dx.doi.org/10.2166/wst.2022.114  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 85  |j 2022  |e 8  |b 15  |c 04  |h 2277-2294