Chain Assembly Kinetics from Magnetic Colloidal Spheres

Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first alig...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1985. - 38(2022), 18 vom: 10. Mai, Seite 5730-5737
Auteur principal: Mhanna, Ramona (Auteur)
Autres auteurs: Gao, Yan, Van Tol, Isaac, Springer, Ela, Wu, Ning, Marr, David W M
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Colloids Polyethylene Glycols 3WJQ0SDW1A
Description
Résumé:Magnetic colloidal chains are a microrobotic system with promising applications due to their versatility, biocompatibility, and ease of manipulation under magnetic fields. Their synthesis involves kinetic pathways that control chain quality, length, and flexibility, a process performed by first aligning superparamagnetic particles under a one-dimensional magnetic field and then chemically linking them using a four-armed maleimide-functionalized poly(ethylene glycol). Here, we systematically vary the concentration of the poly(ethylene glycol) linkers, the reaction temperature, and the magnetic field strength to study their impact on the physical properties of synthesized chains, including the chain length distribution, reaction temperature, and bending modulus. We find that this chain fabrication process resembles step-growth polymerization and can be accurately described by the Flory-Schulz model. Under optimized experimental conditions, we have successfully synthesized long flexible colloidal chains with a bending modulus, which is 4 orders of magnitude smaller than previous studies. Such flexible and long chains can be folded entirely into concentric rings and helices with multiple turns, demonstrating the potential for investigating the actuation, assembly, and folding behaviors of these colloidal polymer analogues
Description:Date Completed 11.05.2022
Date Revised 05.07.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.2c00343