Structural Dynamics and Tunability for Colloidal Tin Halide Perovskite Nanostructures

© 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 34(2022), 30 vom: 30. Juli, Seite e2201353
1. Verfasser: Gahlot, Kushagra (VerfasserIn)
Weitere Verfasser: de Graaf, Sytze, Duim, Herman, Nedelcu, Georgian, Koushki, Razieh M, Ahmadi, Majid, Gavhane, Dnyaneshwar, Lasorsa, Alessia, De Luca, Oreste, Rudolf, Petra, van der Wel, Patrick C A, Loi, Maria A, Kooi, Bart J, Portale, Giuseppe, Calbo, Joaquín, Protesescu, Loredana
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Ruddlesden-Popper perovskites Sn-halide perovskites colloids lead-free perovskites nanocrystals nanosheets synthesis mechanisms
LEADER 01000caa a22002652c 4500
001 NLM34013979X
003 DE-627
005 20250303072438.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202201353  |2 doi 
028 5 2 |a pubmed25n1133.xml 
035 |a (DE-627)NLM34013979X 
035 |a (NLM)35485142 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gahlot, Kushagra  |e verfasserin  |4 aut 
245 1 0 |a Structural Dynamics and Tunability for Colloidal Tin Halide Perovskite Nanostructures 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Lead halide perovskite nanocrystals are highly attractive for next-generation optoelectronics because they are easy to synthesize and offer great compositional and morphological tunability. However, the replacement of lead by tin for sustainability reasons is hampered by the unstable nature of Sn2+ oxidation state and by an insufficient understanding of the chemical processes involved in the synthesis. Here, an optimized synthetic route is demonstrated to obtain stable, tunable, and monodisperse CsSnI3 nanocrystals, exhibiting well-defined excitonic peaks. Similar to lead halide perovskites, these nanocrystals are prepared by combining a precursor mixture of SnI2 , oleylamine, and oleic acid, with a Cs-oleate precursor. Among the products, nanocrystals with 10 nm lateral size in the γ-orthorhombic phase prove to be the most stable. To achieve such stability, an excess of precursor SnI2 as well as substoichiometric Sn:ligand ratios are key. Structural, compositional, and optical investigations complemented by first-principle density functional theory calculations confirm that nanocrystal nucleation and growth follow the formation of (R-NH3 + )2 SnI4 nanosheets, with R = C18 H35 . Under specific synthetic conditions, stable mixtures of 3D nanocrystals CsSnI3 and 2D nanosheets (Ruddlesden-Popper (R-NH3 + )2 Csn -1 Snn I3 n +1 with n > 1) are obtained. These results set a path to exploiting the high potential of Sn halide perovskite nanocrystals for opto-electronic applications 
650 4 |a Journal Article 
650 4 |a Ruddlesden-Popper perovskites 
650 4 |a Sn-halide perovskites 
650 4 |a colloids 
650 4 |a lead-free perovskites 
650 4 |a nanocrystals 
650 4 |a nanosheets 
650 4 |a synthesis mechanisms 
700 1 |a de Graaf, Sytze  |e verfasserin  |4 aut 
700 1 |a Duim, Herman  |e verfasserin  |4 aut 
700 1 |a Nedelcu, Georgian  |e verfasserin  |4 aut 
700 1 |a Koushki, Razieh M  |e verfasserin  |4 aut 
700 1 |a Ahmadi, Majid  |e verfasserin  |4 aut 
700 1 |a Gavhane, Dnyaneshwar  |e verfasserin  |4 aut 
700 1 |a Lasorsa, Alessia  |e verfasserin  |4 aut 
700 1 |a De Luca, Oreste  |e verfasserin  |4 aut 
700 1 |a Rudolf, Petra  |e verfasserin  |4 aut 
700 1 |a van der Wel, Patrick C A  |e verfasserin  |4 aut 
700 1 |a Loi, Maria A  |e verfasserin  |4 aut 
700 1 |a Kooi, Bart J  |e verfasserin  |4 aut 
700 1 |a Portale, Giuseppe  |e verfasserin  |4 aut 
700 1 |a Calbo, Joaquín  |e verfasserin  |4 aut 
700 1 |a Protesescu, Loredana  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 34(2022), 30 vom: 30. Juli, Seite e2201353  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:34  |g year:2022  |g number:30  |g day:30  |g month:07  |g pages:e2201353 
856 4 0 |u http://dx.doi.org/10.1002/adma.202201353  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2022  |e 30  |b 30  |c 07  |h e2201353