FSGANv2 : Improved Subject Agnostic Face Swapping and Reenactment

We present Face Swapping GAN (FSGAN) for face swapping and reenactment. Unlike previous work, we offer a subject agnostic swapping scheme that can be applied to pairs of faces without requiring training on those faces. We derive a novel iterative deep learning-based approach for face reenactment whi...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 1 vom: 11. Jan., Seite 560-575
Auteur principal: Nirkin, Yuval (Auteur)
Autres auteurs: Keller, Yosi, Hassner, Tal
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article