Differentiable Graph Module (DGM) for Graph Convolutional Networks

Graph deep learning has recently emerged as a powerful ML concept allowing to generalize successful deep neural architectures to non-euclidean structured data. Such methods have shown promising results on a broad spectrum of applications ranging from social science, biomedicine, and particle physics...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 11. Feb., Seite 1606-1617
1. Verfasser: Kazi, Anees (VerfasserIn)
Weitere Verfasser: Cosmo, Luca, Ahmadi, Seyed-Ahmad, Navab, Nassir, Bronstein, Michael M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article