Motif-GCNs With Local and Non-Local Temporal Blocks for Skeleton-Based Action Recognition
Recent works have achieved remarkable performance for action recognition with human skeletal data by utilizing graph convolutional models. Existing models mainly focus on developing graph convolutional operations to encode structural properties of a skeletal graph, whose topology is manually predefi...
Ausführliche Beschreibung
Bibliographische Detailangaben
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 11. Feb., Seite 2009-2023
|
1. Verfasser: |
Wen, Yu-Hui
(VerfasserIn) |
Weitere Verfasser: |
Gao, Lin,
Fu, Hongbo,
Zhang, Fang-Lue,
Xia, Shihong,
Liu, Yong-Jin |
Format: | Online-Aufsatz
|
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence
|
Schlagworte: | Journal Article |