Reinforced Causal Explainer for Graph Neural Networks

Explainability is crucial for probing graph neural networks (GNNs), answering questions like "Why the GNN model makes a certain prediction?". Feature attribution is a prevalent technique of highlighting the explanatory subgraph in the input graph, which plausibly leads the GNN model to mak...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 11. Feb., Seite 2297-2309
1. Verfasser: Wang, Xiang (VerfasserIn)
Weitere Verfasser: Wu, Yingxin, Zhang, An, Feng, Fuli, He, Xiangnan, Chua, Tat-Seng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article