Toyota Smarthome Untrimmed : Real-World Untrimmed Videos for Activity Detection

Designing activity detection systems that can be successfully deployed in daily-living environments requires datasets that pose the challenges typical of real-world scenarios. In this paper, we introduce a new untrimmed daily-living dataset that features several real-world challenges: Toyota Smartho...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 30. Feb., Seite 2533-2550
1. Verfasser: Dai, Rui (VerfasserIn)
Weitere Verfasser: Das, Srijan, Sharma, Saurav, Minciullo, Luca, Garattoni, Lorenzo, Bremond, Francois, Francesca, Gianpiero
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339971339
003 DE-627
005 20231226004106.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3169976  |2 doi 
028 5 2 |a pubmed24n1133.xml 
035 |a (DE-627)NLM339971339 
035 |a (NLM)35468059 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dai, Rui  |e verfasserin  |4 aut 
245 1 0 |a Toyota Smarthome Untrimmed  |b Real-World Untrimmed Videos for Activity Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Designing activity detection systems that can be successfully deployed in daily-living environments requires datasets that pose the challenges typical of real-world scenarios. In this paper, we introduce a new untrimmed daily-living dataset that features several real-world challenges: Toyota Smarthome Untrimmed (TSU). TSU contains a wide variety of activities performed in a spontaneous manner. The dataset contains dense annotations including elementary, composite activities and activities involving interactions with objects. We provide an analysis of the real-world challenges featured by our dataset, highlighting the open issues for detection algorithms. We show that current state-of-the-art methods fail to achieve satisfactory performance on the TSU dataset. Therefore, we propose a new baseline method for activity detection to tackle the novel challenges provided by our dataset. This method leverages one modality (i.e. optic flow) to generate the attention weights to guide another modality (i.e RGB) to better detect the activity boundaries. This is particularly beneficial to detect activities characterized by high temporal variance. We show that the method we propose outperforms state-of-the-art methods on TSU and on another popular challenging dataset, Charades 
650 4 |a Journal Article 
700 1 |a Das, Srijan  |e verfasserin  |4 aut 
700 1 |a Sharma, Saurav  |e verfasserin  |4 aut 
700 1 |a Minciullo, Luca  |e verfasserin  |4 aut 
700 1 |a Garattoni, Lorenzo  |e verfasserin  |4 aut 
700 1 |a Bremond, Francois  |e verfasserin  |4 aut 
700 1 |a Francesca, Gianpiero  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 30. Feb., Seite 2533-2550  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:30  |g month:02  |g pages:2533-2550 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3169976  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 30  |c 02  |h 2533-2550