A lightweight capsule network architecture for detection of COVID-19 from lung CT scans

© 2022 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:International journal of imaging systems and technology. - 1990. - 32(2022), 2 vom: 15. März, Seite 419-434
Auteur principal: Tiwari, Shamik (Auteur)
Autres auteurs: Jain, Anurag
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:International journal of imaging systems and technology
Sujets:Journal Article COVID‐19 CapsNet DenseNet MobileNet ResNet VGG16 deep learning lung CT scan
LEADER 01000caa a22002652c 4500
001 NLM339943297
003 DE-627
005 20250303070359.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22706  |2 doi 
028 5 2 |a pubmed25n1132.xml 
035 |a (DE-627)NLM339943297 
035 |a (NLM)35465213 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tiwari, Shamik  |e verfasserin  |4 aut 
245 1 2 |a A lightweight capsule network architecture for detection of COVID-19 from lung CT scans 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Wiley Periodicals LLC. 
520 |a COVID-19, a novel coronavirus, has spread quickly and produced a worldwide respiratory ailment outbreak. There is a need for large-scale screening to prevent the spreading of the disease. When compared with the reverse transcription polymerase chain reaction (RT-PCR) test, computed tomography (CT) is far more consistent, concrete, and precise in detecting COVID-19 patients through clinical diagnosis. An architecture based on deep learning has been proposed by integrating a capsule network with different variants of convolution neural networks. DenseNet, ResNet, VGGNet, and MobileNet are utilized with CapsNet to detect COVID-19 cases using lung computed tomography scans. It has found that all the four models are providing adequate accuracy, among which the VGGCapsNet, DenseCapsNet, and MobileCapsNet models have gained the highest accuracy of 99%. An Android-based app can be deployed using MobileCapsNet model to detect COVID-19 as it is a lightweight model and best suited for handheld devices like a mobile 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a CapsNet 
650 4 |a DenseNet 
650 4 |a MobileNet 
650 4 |a ResNet 
650 4 |a VGG16 
650 4 |a deep learning 
650 4 |a lung CT scan 
700 1 |a Jain, Anurag  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 32(2022), 2 vom: 15. März, Seite 419-434  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnas 
773 1 8 |g volume:32  |g year:2022  |g number:2  |g day:15  |g month:03  |g pages:419-434 
856 4 0 |u http://dx.doi.org/10.1002/ima.22706  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2022  |e 2  |b 15  |c 03  |h 419-434