Dual Alternating Direction Method of Multipliers for Inverse Imaging

Inverse imaging covers a wide range of imaging applications, including super-resolution, deblurring, and compressive sensing. We propose a novel scheme to solve such problems by combining duality and the alternating direction method of multipliers (ADMM). In addition to a conventional ADMM process,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 21., Seite 3295-3308
1. Verfasser: Song, Li (VerfasserIn)
Weitere Verfasser: Ge, Zhou, Lam, Edmund Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339759992
003 DE-627
005 20231226003620.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3167915  |2 doi 
028 5 2 |a pubmed24n1132.xml 
035 |a (DE-627)NLM339759992 
035 |a (NLM)35446766 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Li  |e verfasserin  |4 aut 
245 1 0 |a Dual Alternating Direction Method of Multipliers for Inverse Imaging 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inverse imaging covers a wide range of imaging applications, including super-resolution, deblurring, and compressive sensing. We propose a novel scheme to solve such problems by combining duality and the alternating direction method of multipliers (ADMM). In addition to a conventional ADMM process, we introduce a second one that solves the dual problem to find the estimated nontrivial lower bound of the objective function, and the related iteration results are used in turn to guide the primal iterations. We call this D-ADMM, and show that it converges to the global minimum when the regularization function is convex and the optimization problem has at least one optimizer. Furthermore, we show how the scheme can give rise to two specific algorithms, called D-ADMM-L2 and D-ADMM-TV, by having different regularization functions. We compare D-ADMM-TV with other methods on image super-resolution and demonstrate comparable or occasionally slightly better quality results. This paves the way of incorporating advanced operators and strategies designed for basic ADMM into the D-ADMM method as well to further improve the performances of those methods 
650 4 |a Journal Article 
700 1 |a Ge, Zhou  |e verfasserin  |4 aut 
700 1 |a Lam, Edmund Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 21., Seite 3295-3308  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:21  |g pages:3295-3308 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3167915  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 21  |h 3295-3308