Emotional Attention : From Eye Tracking to Computational Modeling

Attending selectively to emotion-eliciting stimuli is intrinsic to human vision. In this research, we investigate how emotion-elicitation features of images relate to human selective attention. We create the EMOtional attention dataset (EMOd). It is a set of diverse emotion-eliciting images, each wi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 21. Feb., Seite 1682-1699
1. Verfasser: Fan, Shaojing (VerfasserIn)
Weitere Verfasser: Shen, Zhiqi, Jiang, Ming, Koenig, Bryan L, Kankanhalli, Mohan S, Zhao, Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM339759933
003 DE-627
005 20231226003620.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3169234  |2 doi 
028 5 2 |a pubmed24n1132.xml 
035 |a (DE-627)NLM339759933 
035 |a (NLM)35446761 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fan, Shaojing  |e verfasserin  |4 aut 
245 1 0 |a Emotional Attention  |b From Eye Tracking to Computational Modeling 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.04.2023 
500 |a Date Revised 05.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Attending selectively to emotion-eliciting stimuli is intrinsic to human vision. In this research, we investigate how emotion-elicitation features of images relate to human selective attention. We create the EMOtional attention dataset (EMOd). It is a set of diverse emotion-eliciting images, each with (1) eye-tracking data from 16 subjects, (2) image context labels at both object- and scene-level. Based on analyses of human perceptions of EMOd, we report an emotion prioritization effect: emotion-eliciting content draws stronger and earlier human attention than neutral content, but this advantage diminishes dramatically after initial fixation. We find that human attention is more focused on awe eliciting and aesthetic vehicle and animal scenes in EMOd. Aiming to model the above human attention behavior computationally, we design a deep neural network (CASNet II), which includes a channel weighting subnetwork that prioritizes emotion-eliciting objects, and an Atrous Spatial Pyramid Pooling (ASPP) structure that learns the relative importance of image regions at multiple scales. Visualizations and quantitative analyses demonstrate the model's ability to simulate human attention behavior, especially on emotion-eliciting content 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Shen, Zhiqi  |e verfasserin  |4 aut 
700 1 |a Jiang, Ming  |e verfasserin  |4 aut 
700 1 |a Koenig, Bryan L  |e verfasserin  |4 aut 
700 1 |a Kankanhalli, Mohan S  |e verfasserin  |4 aut 
700 1 |a Zhao, Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 21. Feb., Seite 1682-1699  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:21  |g month:02  |g pages:1682-1699 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3169234  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 21  |c 02  |h 1682-1699