|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM339684372 |
003 |
DE-627 |
005 |
20250303063613.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TVCG.2022.3167896
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1132.xml
|
035 |
|
|
|a (DE-627)NLM339684372
|
035 |
|
|
|a (NLM)35439135
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wang, Chaoli
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a DL4SciVis
|b A State-of-the-Art Survey on Deep Learning for Scientific Visualization
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.07.2023
|
500 |
|
|
|a Date Revised 03.07.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Since 2016, we have witnessed the tremendous growth of artificial intelligence+visualization (AI+VIS) research. However, existing survey articles on AI+VIS focus on visual analytics and information visualization, not scientific visualization (SciVis). In this article, we survey related deep learning (DL) works in SciVis, specifically in the direction of DL4SciVis: designing DL solutions for solving SciVis problems. To stay focused, we primarily consider works that handle scalar and vector field data but exclude mesh data. We classify and discuss these works along six dimensions: domain setting, research task, learning type, network architecture, loss function, and evaluation metric. The article concludes with a discussion of the remaining gaps to fill along the discussed dimensions and the grand challenges we need to tackle as a community. This state-of-the-art survey guides SciVis researchers in gaining an overview of this emerging topic and points out future directions to grow this research
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Han, Jun
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on visualization and computer graphics
|d 1996
|g 29(2023), 8 vom: 19. Aug., Seite 3714-3733
|w (DE-627)NLM098269445
|x 1941-0506
|7 nnas
|
773 |
1 |
8 |
|g volume:29
|g year:2023
|g number:8
|g day:19
|g month:08
|g pages:3714-3733
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TVCG.2022.3167896
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2023
|e 8
|b 19
|c 08
|h 3714-3733
|