DL4SciVis : A State-of-the-Art Survey on Deep Learning for Scientific Visualization

Since 2016, we have witnessed the tremendous growth of artificial intelligence+visualization (AI+VIS) research. However, existing survey articles on AI+VIS focus on visual analytics and information visualization, not scientific visualization (SciVis). In this article, we survey related deep learning...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 8 vom: 19. Aug., Seite 3714-3733
1. Verfasser: Wang, Chaoli (VerfasserIn)
Weitere Verfasser: Han, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM339684372
003 DE-627
005 20250303063613.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3167896  |2 doi 
028 5 2 |a pubmed25n1132.xml 
035 |a (DE-627)NLM339684372 
035 |a (NLM)35439135 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Chaoli  |e verfasserin  |4 aut 
245 1 0 |a DL4SciVis  |b A State-of-the-Art Survey on Deep Learning for Scientific Visualization 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Since 2016, we have witnessed the tremendous growth of artificial intelligence+visualization (AI+VIS) research. However, existing survey articles on AI+VIS focus on visual analytics and information visualization, not scientific visualization (SciVis). In this article, we survey related deep learning (DL) works in SciVis, specifically in the direction of DL4SciVis: designing DL solutions for solving SciVis problems. To stay focused, we primarily consider works that handle scalar and vector field data but exclude mesh data. We classify and discuss these works along six dimensions: domain setting, research task, learning type, network architecture, loss function, and evaluation metric. The article concludes with a discussion of the remaining gaps to fill along the discussed dimensions and the grand challenges we need to tackle as a community. This state-of-the-art survey guides SciVis researchers in gaining an overview of this emerging topic and points out future directions to grow this research 
650 4 |a Journal Article 
700 1 |a Han, Jun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 8 vom: 19. Aug., Seite 3714-3733  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:8  |g day:19  |g month:08  |g pages:3714-3733 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3167896  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 8  |b 19  |c 08  |h 3714-3733