Self-Supervised Monocular Depth Estimation With Multiscale Perception

Extracting 3D information from a single optical image is very attractive. Recently emerging self-supervised methods can learn depth representations without using ground truth depth maps as training data by transforming the depth prediction task into an image synthesis task. However, existing methods...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 19., Seite 3251-3266
1. Verfasser: Zhang, Yourun (VerfasserIn)
Weitere Verfasser: Gong, Maoguo, Li, Jianzhao, Zhang, Mingyang, Jiang, Fenlong, Zhao, Hongyu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339684364
003 DE-627
005 20231226003440.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3167307  |2 doi 
028 5 2 |a pubmed24n1132.xml 
035 |a (DE-627)NLM339684364 
035 |a (NLM)35439134 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Yourun  |e verfasserin  |4 aut 
245 1 0 |a Self-Supervised Monocular Depth Estimation With Multiscale Perception 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Extracting 3D information from a single optical image is very attractive. Recently emerging self-supervised methods can learn depth representations without using ground truth depth maps as training data by transforming the depth prediction task into an image synthesis task. However, existing methods rely on a differentiable bilinear sampler for image synthesis, which results in each pixel in a synthetic image being derived from only four pixels in the source image and causes each pixel in the depth map to perceive only a few pixels in the source image. In addition, when calculating the photometric error between a synthetic image and its corresponding target image, existing methods only consider the photometric error within a small neighborhood of each single pixel and therefore ignore correlations between larger areas, which causes the model to tend to fall into the local optima for small patches. In order to extend the perceptual area of the depth map over the source image, we propose a novel multi-scale method that downsamples the predicted depth map and performs image synthesis at different resolutions, which enables each pixel in the depth map to perceive more pixels in the source image and improves the performance of the model. As for the locality of photometric error, we propose a structural similarity (SSIM) pyramid loss to allow the model to sense the difference between images in multiple areas of different sizes. Experimental results show that our method achieves superior performance on both outdoor and indoor benchmarks 
650 4 |a Journal Article 
700 1 |a Gong, Maoguo  |e verfasserin  |4 aut 
700 1 |a Li, Jianzhao  |e verfasserin  |4 aut 
700 1 |a Zhang, Mingyang  |e verfasserin  |4 aut 
700 1 |a Jiang, Fenlong  |e verfasserin  |4 aut 
700 1 |a Zhao, Hongyu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 19., Seite 3251-3266  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:19  |g pages:3251-3266 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3167307  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 19  |h 3251-3266