An embedded toolset for human activity monitoring in critical environments

© 2022 Published by Elsevier Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Expert systems with applications. - 1999. - 199(2022) vom: 01. Aug., Seite 117125
1. Verfasser: Di Benedetto, Marco (VerfasserIn)
Weitere Verfasser: Carrara, Fabio, Ciampi, Luca, Falchi, Fabrizio, Gennaro, Claudio, Amato, Giuseppe
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Expert systems with applications
Schlagworte:Journal Article Computer vision Counting Deep learning Embedded system Homography Machine learning Personal protective equipment
LEADER 01000caa a22002652c 4500
001 NLM339608889
003 DE-627
005 20250303062815.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.eswa.2022.117125  |2 doi 
028 5 2 |a pubmed25n1131.xml 
035 |a (DE-627)NLM339608889 
035 |a (NLM)35431465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Di Benedetto, Marco  |e verfasserin  |4 aut 
245 1 3 |a An embedded toolset for human activity monitoring in critical environments 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 21.12.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Published by Elsevier Ltd. 
520 |a In many working and recreational activities, there are scenarios where both individual and collective safety have to be constantly checked and properly signaled, as occurring in dangerous workplaces or during pandemic events like the recent COVID-19 disease. From wearing personal protective equipment to filling physical spaces with an adequate number of people, it is clear that a possibly automatic solution would help to check compliance with the established rules. Based on an off-the-shelf compact and low-cost hardware, we present a deployed real use-case embedded system capable of perceiving people's behavior and aggregations and supervising the appliance of a set of rules relying on a configurable plug-in framework. Working on indoor and outdoor environments, we show that our implementation of counting people aggregations, measuring their reciprocal physical distances, and checking the proper usage of protective equipment is an effective yet open framework for monitoring human activities in critical conditions 
650 4 |a Journal Article 
650 4 |a Computer vision 
650 4 |a Counting 
650 4 |a Deep learning 
650 4 |a Embedded system 
650 4 |a Homography 
650 4 |a Machine learning 
650 4 |a Personal protective equipment 
700 1 |a Carrara, Fabio  |e verfasserin  |4 aut 
700 1 |a Ciampi, Luca  |e verfasserin  |4 aut 
700 1 |a Falchi, Fabrizio  |e verfasserin  |4 aut 
700 1 |a Gennaro, Claudio  |e verfasserin  |4 aut 
700 1 |a Amato, Giuseppe  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Expert systems with applications  |d 1999  |g 199(2022) vom: 01. Aug., Seite 117125  |w (DE-627)NLM098196782  |x 0957-4174  |7 nnas 
773 1 8 |g volume:199  |g year:2022  |g day:01  |g month:08  |g pages:117125 
856 4 0 |u http://dx.doi.org/10.1016/j.eswa.2022.117125  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 199  |j 2022  |b 01  |c 08  |h 117125