Unsupervised Structure-Texture Separation Network for Oracle Character Recognition

Oracle bone script is the earliest-known Chinese writing system of the Shang dynasty and is precious to archeology and philology. However, real-world scanned oracle data are rare and few experts are available for annotation which make the automatic recognition of scanned oracle characters become a c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 14., Seite 3137-3150
1. Verfasser: Wang, Mei (VerfasserIn)
Weitere Verfasser: Deng, Weihong, Liu, Cheng-Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339504579
003 DE-627
005 20231226003039.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2022.3165989  |2 doi 
028 5 2 |a pubmed24n1131.xml 
035 |a (DE-627)NLM339504579 
035 |a (NLM)35420984 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Mei  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Structure-Texture Separation Network for Oracle Character Recognition 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 22.04.2022 
500 |a Date Revised 22.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Oracle bone script is the earliest-known Chinese writing system of the Shang dynasty and is precious to archeology and philology. However, real-world scanned oracle data are rare and few experts are available for annotation which make the automatic recognition of scanned oracle characters become a challenging task. Therefore, we aim to explore unsupervised domain adaptation to transfer knowledge from handprinted oracle data, which are easy to acquire, to scanned domain. We propose a structure-texture separation network (STSN), which is an end-to-end learning framework for joint disentanglement, transformation, adaptation and recognition. First, STSN disentangles features into structure (glyph) and texture (noise) components by generative models, and then aligns handprinted and scanned data in structure feature space such that the negative influence caused by serious noises can be avoided when adapting. Second, transformation is achieved via swapping the learned textures across domains and a classifier for final classification is trained to predict the labels of the transformed scanned characters. This not only guarantees the absolute separation, but also enhances the discriminative ability of the learned features. Extensive experiments on Oracle-241 dataset show that STSN outperforms other adaptation methods and successfully improves recognition performance on scanned data even when they are contaminated by long burial and careless excavation 
650 4 |a Journal Article 
700 1 |a Deng, Weihong  |e verfasserin  |4 aut 
700 1 |a Liu, Cheng-Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 31(2022) vom: 14., Seite 3137-3150  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:31  |g year:2022  |g day:14  |g pages:3137-3150 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2022.3165989  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2022  |b 14  |h 3137-3150