Semantically Disentangled Variational Autoencoder for Modeling 3D Facial Details

Parametric face models, such as morphable and blendshape models, have shown great potential in face representation, reconstruction, and animation. However, all these models focus on large-scale facial geometry. Facial details such as wrinkles are not parameterized in these models, impeding accuracy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 8 vom: 12. Aug., Seite 3630-3641
1. Verfasser: Ling, Jingwang (VerfasserIn)
Weitere Verfasser: Wang, Zhibo, Lu, Ming, Wang, Quan, Qian, Chen, Xu, Feng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339425261
003 DE-627
005 20231226002851.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3166666  |2 doi 
028 5 2 |a pubmed24n1131.xml 
035 |a (DE-627)NLM339425261 
035 |a (NLM)35412983 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ling, Jingwang  |e verfasserin  |4 aut 
245 1 0 |a Semantically Disentangled Variational Autoencoder for Modeling 3D Facial Details 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.07.2023 
500 |a Date Revised 03.07.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Parametric face models, such as morphable and blendshape models, have shown great potential in face representation, reconstruction, and animation. However, all these models focus on large-scale facial geometry. Facial details such as wrinkles are not parameterized in these models, impeding accuracy and realism. In this article, we propose a method to learn a Semantically Disentangled Variational Autoencoder (SDVAE) to parameterize facial details and support independent detail manipulation as an extension of an off-the-shelf large-scale face model. Our method utilizes the non-linear capability of Deep Neural Networks for detail modeling, achieving better accuracy and greater representation power compared with linear models. In order to disentangle the semantic factors of identity, expression and age, we propose to eliminate the correlation between different factors in an adversarial manner. Therefore, wrinkle-level details of various identities, expressions, and ages can be generated and independently controlled by changing latent vectors of our SDVAE. We further leverage our model to reconstruct 3D faces via fitting to facial scans and images. Benefiting from our parametric model, we achieve accurate and robust reconstruction, and the reconstructed details can be easily animated and manipulated. We evaluate our method on practical applications, including scan fitting, image fitting, video tracking, model manipulation, and expression and age animation. Extensive experiments demonstrate that the proposed method can robustly model facial details and achieve better results than alternative methods 
650 4 |a Journal Article 
700 1 |a Wang, Zhibo  |e verfasserin  |4 aut 
700 1 |a Lu, Ming  |e verfasserin  |4 aut 
700 1 |a Wang, Quan  |e verfasserin  |4 aut 
700 1 |a Qian, Chen  |e verfasserin  |4 aut 
700 1 |a Xu, Feng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 8 vom: 12. Aug., Seite 3630-3641  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:8  |g day:12  |g month:08  |g pages:3630-3641 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3166666  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 8  |b 12  |c 08  |h 3630-3641