Rethinking the Competition Between Detection and ReID in Multiobject Tracking

Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked beca...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 31(2022) vom: 12., Seite 3182-3196
1. Verfasser: Liang, Chao (VerfasserIn)
Weitere Verfasser: Zhang, Zhipeng, Zhou, Xue, Li, Bing, Zhu, Shuyuan, Hu, Weiming
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Due to balanced accuracy and speed, one-shot models which jointly learn detection and identification embeddings, have drawn great attention in multi-object tracking (MOT). However, the inherent differences and relations between detection and re-identification (ReID) are unconsciously overlooked because of treating them as two isolated tasks in the one-shot tracking paradigm. This leads to inferior performance compared with existing two-stage methods. In this paper, we first dissect the reasoning process for these two tasks, which reveals that the competition between them inevitably would destroy task-dependent representations learning. To tackle this problem, we propose a novel reciprocal network (REN) with a self-relation and cross-relation design so that to impel each branch to better learn task-dependent representations. The proposed model aims to alleviate the deleterious tasks competition, meanwhile improve the cooperation between detection and ReID. Furthermore, we introduce a scale-aware attention network (SAAN) that prevents semantic level misalignment to improve the association capability of ID embeddings. By integrating the two delicately designed networks into a one-shot online MOT system, we construct a strong MOT tracker, namely CSTrack. Our tracker achieves the state-of-the-art performance on MOT16, MOT17 and MOT20 datasets, without other bells and whistles. Moreover, CSTrack is efficient and runs at 16.4 FPS on a single modern GPU, and its lightweight version even runs at 34.6 FPS. The complete code has been released at https://github.com/JudasDie/SOTS
Beschreibung:Date Revised 26.04.2022
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2022.3165376