Shaping Deep Feature Space Towards Gaussian Mixture for Visual Classification

The softmax cross-entropy loss function has been widely used to train deep models for various tasks. In this work, we propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification. Unlike the softmax cross-entropy loss, our method explicitly shapes the deep feature...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 2 vom: 12. Feb., Seite 2430-2444
1. Verfasser: Wan, Weitao (VerfasserIn)
Weitere Verfasser: Yu, Cheng, Chen, Jiansheng, Wu, Tong, Zhong, Yuanyi, Yang, Ming-Hsuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM339425156
003 DE-627
005 20231226002851.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3166879  |2 doi 
028 5 2 |a pubmed24n1131.xml 
035 |a (DE-627)NLM339425156 
035 |a (NLM)35412972 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wan, Weitao  |e verfasserin  |4 aut 
245 1 0 |a Shaping Deep Feature Space Towards Gaussian Mixture for Visual Classification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.04.2023 
500 |a Date Revised 06.04.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The softmax cross-entropy loss function has been widely used to train deep models for various tasks. In this work, we propose a Gaussian mixture (GM) loss function for deep neural networks for visual classification. Unlike the softmax cross-entropy loss, our method explicitly shapes the deep feature space towards a Gaussian Mixture distribution. With a classification margin and a likelihood regularization, the GM loss facilitates both high classification performance and accurate modeling of the feature distribution. The GM loss can be readily used to distinguish the adversarial examples based on the discrepancy between feature distributions of clean and adversarial examples. Furthermore, theoretical analysis shows that a symmetric feature space can be achieved by using the GM loss, which enables the models to perform robustly against adversarial attacks. The proposed model can be implemented easily and efficiently without introducing more trainable parameters. Extensive evaluations demonstrate that the method with the GM loss performs favorably on image classification, face recognition, and detection as well as recognition of adversarial examples generated by various attacks 
650 4 |a Journal Article 
700 1 |a Yu, Cheng  |e verfasserin  |4 aut 
700 1 |a Chen, Jiansheng  |e verfasserin  |4 aut 
700 1 |a Wu, Tong  |e verfasserin  |4 aut 
700 1 |a Zhong, Yuanyi  |e verfasserin  |4 aut 
700 1 |a Yang, Ming-Hsuan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 2 vom: 12. Feb., Seite 2430-2444  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:2  |g day:12  |g month:02  |g pages:2430-2444 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3166879  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 2  |b 12  |c 02  |h 2430-2444