Modeling the effects of multiple exposures with unknown group memberships : a Bayesian latent variable approach

We propose a Bayesian latent variable model to allow estimation of the covariate-adjusted relationships between an outcome and a small number of latent exposure variables, using data from multiple observed exposures. Each latent variable is assumed to be represented by multiple exposures, where memb...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 49(2022), 4 vom: 04., Seite 831-857
1. Verfasser: Zavez, Alexis (VerfasserIn)
Weitere Verfasser: McSorley, Emeir M, Yeates, Alison J, Thurston, Sally W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Immune response Inflammation Latent variables Markov chain Monte Carlo Multiple exposures Seychelles Child Development Study
LEADER 01000caa a22002652c 4500
001 NLM33930412X
003 DE-627
005 20250303055530.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2020.1843611  |2 doi 
028 5 2 |a pubmed25n1130.xml 
035 |a (DE-627)NLM33930412X 
035 |a (NLM)35400784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zavez, Alexis  |e verfasserin  |4 aut 
245 1 0 |a Modeling the effects of multiple exposures with unknown group memberships  |b a Bayesian latent variable approach 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.04.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a Bayesian latent variable model to allow estimation of the covariate-adjusted relationships between an outcome and a small number of latent exposure variables, using data from multiple observed exposures. Each latent variable is assumed to be represented by multiple exposures, where membership of the observed exposures to latent groups is unknown. Our model assumes that one measured exposure variable can be considered as a sentinel marker for each latent variable, while membership of the other measured exposures is estimated using MCMC sampling based on a classical measurement error model framework. We illustrate our model using data on multiple cytokines and birth weight from the Seychelles Child Development Study, and evaluate the performance of our model in a simulation study. Classification of cytokines into Th1 and Th2 cytokine classes in the Seychelles study revealed some differences from standard Th1/Th2 classifications. In simulations, our model correctly classified measured exposures into latent groups, and estimated model parameters with little bias and with coverage that was similar to the oracle model 
650 4 |a Journal Article 
650 4 |a Immune response 
650 4 |a Inflammation 
650 4 |a Latent variables 
650 4 |a Markov chain Monte Carlo 
650 4 |a Multiple exposures 
650 4 |a Seychelles Child Development Study 
700 1 |a McSorley, Emeir M  |e verfasserin  |4 aut 
700 1 |a Yeates, Alison J  |e verfasserin  |4 aut 
700 1 |a Thurston, Sally W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 49(2022), 4 vom: 04., Seite 831-857  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:49  |g year:2022  |g number:4  |g day:04  |g pages:831-857 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2020.1843611  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 49  |j 2022  |e 4  |b 04  |h 831-857