Climate and genetic data enhancement using deep learning analytics to improve maize yield predictability

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 73(2022), 15 vom: 03. Sept., Seite 5336-5354
1. Verfasser: Sarzaeim, Parisa (VerfasserIn)
Weitere Verfasser: Muñoz-Arriola, Francisco, Jarquín, Diego
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Climate data science Genomes to Fields (G2F) deep neural network (DNN) genotype by environment (G×E) model maize yield predictability train–test schemes