GNN-Surrogate : A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations

We propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is important for domain scientists to understand the influence of input parameters (e.g., wind stress) on the simulation output (e.g., tempe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 28(2022), 6 vom: 07. Juni, Seite 2301-2313
1. Verfasser: Shi, Neng (VerfasserIn)
Weitere Verfasser: Xu, Jiayi, Wurster, Skylar W, Guo, Hanqi, Woodring, Jonathan, Van Roekel, Luke P, Shen, Han-Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM339195797
003 DE-627
005 20250303054424.0
007 cr uuu---uuuuu
008 231226s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2022.3165345  |2 doi 
028 5 2 |a pubmed25n1130.xml 
035 |a (DE-627)NLM339195797 
035 |a (NLM)35389867 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Neng  |e verfasserin  |4 aut 
245 1 0 |a GNN-Surrogate  |b A Hierarchical and Adaptive Graph Neural Network for Parameter Space Exploration of Unstructured-Mesh Ocean Simulations 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 03.05.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose GNN-Surrogate, a graph neural network-based surrogate model to explore the parameter space of ocean climate simulations. Parameter space exploration is important for domain scientists to understand the influence of input parameters (e.g., wind stress) on the simulation output (e.g., temperature). The exploration requires scientists to exhaust the complicated parameter space by running a batch of computationally expensive simulations. Our approach improves the efficiency of parameter space exploration with a surrogate model that predicts the simulation outputs accurately and efficiently. Specifically, GNN-Surrogate predicts the output field with given simulation parameters so scientists can explore the simulation parameter space with visualizations from user-specified visual mappings. Moreover, our graph-based techniques are designed for unstructured meshes, making the exploration of simulation outputs on irregular grids efficient. For efficient training, we generate hierarchical graphs and use adaptive resolutions. We give quantitative and qualitative evaluations on the MPAS-Ocean simulation to demonstrate the effectiveness and efficiency of GNN-Surrogate. Source code is publicly available at https://github.com/trainsn/GNN-Surrogate 
650 4 |a Journal Article 
700 1 |a Xu, Jiayi  |e verfasserin  |4 aut 
700 1 |a Wurster, Skylar W  |e verfasserin  |4 aut 
700 1 |a Guo, Hanqi  |e verfasserin  |4 aut 
700 1 |a Woodring, Jonathan  |e verfasserin  |4 aut 
700 1 |a Van Roekel, Luke P  |e verfasserin  |4 aut 
700 1 |a Shen, Han-Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 28(2022), 6 vom: 07. Juni, Seite 2301-2313  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:28  |g year:2022  |g number:6  |g day:07  |g month:06  |g pages:2301-2313 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2022.3165345  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2022  |e 6  |b 07  |c 06  |h 2301-2313