O-glycosylation of the extracellular domain of pollen class I formins modulates their plasma membrane mobility

© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 73(2022), 12 vom: 24. Juni, Seite 3929-3945
1. Verfasser: Lara-Mondragón, Cecilia M (VerfasserIn)
Weitere Verfasser: Dorchak, Alexandria, MacAlister, Cora A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Actin cell wall cytoskeleton formin glycosylation pollen tube tip growth mehr... Actins Arabidopsis Proteins Formins Hydroxyproline RMB44WO89X
Beschreibung
Zusammenfassung:© The Author(s) 2022. Published by Oxford University Press on behalf of the Society for Experimental Biology.
In plant cells, linkage between the cytoskeleton, plasma membrane, and cell wall is crucial for maintaining cell shape. In highly polarized pollen tubes, this coordination is especially important to allow rapid tip growth and successful fertilization. Class I formins contain cytoplasmic actin-nucleating formin homology domains as well as a proline-rich extracellular domain and are candidate coordination factors. Here, using Arabidopsis, we investigated the functional significance of the extracellular domain of two pollen-expressed class I formins: AtFH3, which does not have a polar localization, and AtFH5, which is limited to the growing tip region. We show that the extracellular domain of both is necessary for their function, and identify distinct O-glycans attached to these sequences, AtFH5 being hydroxyproline-arabinosylated and AtFH3 carrying arabinogalactan chains. Loss of hydroxyproline arabinosylation altered the plasma membrane localization of AtFH5 and disrupted actin cytoskeleton organization. Moreover, we show that O-glycans differentially affect lateral mobility in the plasma membrane. Together, our results support a model of protein sub-functionalization in which AtFH5 and AtFH3, restricted to specific plasma membrane domains by their extracellular domains and the glycans attached to them, organize distinct subarrays of actin during pollen tube elongation
Beschreibung:Date Completed 28.06.2022
Date Revised 03.08.2022
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erac131