|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM338853634 |
003 |
DE-627 |
005 |
20250303051253.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2022 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202200894
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1129.xml
|
035 |
|
|
|a (DE-627)NLM338853634
|
035 |
|
|
|a (NLM)35355341
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Bingjie
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Zero-Strain High-Capacity Silicon/Carbon Anode Enabled by a MOF-Derived Space-Confined Single-Atom Catalytic Strategy for Lithium-Ion Batteries
|
264 |
|
1 |
|c 2022
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 26.05.2022
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2022 Wiley-VCH GmbH.
|
520 |
|
|
|a Developing zero-strain electrode materials with high capacity is crucial for lithium-ion batteries (LIBs). Here, a new zero-strain composite material made of ultrasmall Si nanodots (NDs) within metal organic framework-derived nanoreactors (Si NDs⊂MDN) through a novel space-confined catalytic strategy is reported. The unique Si NDs⊂MDN anode features a low strain (<3%) and a high theoretical lithium storage capacity (1524 mAh g-1 ) which far surpasses the traditional single-crystal counterparts that suffer from a low capacity delivery. The zero-strain property is evidenced by substantial characterizations including ex/in situ transmission electron microscopy and mechanical simulations. The Si NDs⊂MDN exhibits superior cycling stability and high reversible capacity (1327 mAh g-1 at 0.1 A g-1 after 100 cycles) in half-cells and high energy density (366 Wh kg-1 after 300 cycles) in a full cell. This study reports a new catalog of zero-strain electrode material with significantly improved capacity beyond the traditional single-crystal zero-strain materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a lithium ion batteries
|
650 |
|
4 |
|a silicon
|
650 |
|
4 |
|a single-atom catalysis
|
650 |
|
4 |
|a structural stability
|
650 |
|
4 |
|a zero strain
|
700 |
1 |
|
|a Chen, Lu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zu, Lianhai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Feng, Yutong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Su, Qingmei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Chi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Jinhu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 34(2022), 21 vom: 15. Mai, Seite e2200894
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:34
|g year:2022
|g number:21
|g day:15
|g month:05
|g pages:e2200894
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202200894
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 34
|j 2022
|e 21
|b 15
|c 05
|h e2200894
|